Presentation is loading. Please wait.

Presentation is loading. Please wait.

Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R.

Similar presentations


Presentation on theme: "Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R."— Presentation transcript:

1 Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R.

2

3 Albert Einstein

4

5

6 The heart as the closest clock of men

7

8

9 Slaves of our past and of the time

10 TIME The most measured physical quantity THE TWO FACES OF TIME MEASUREMENT The current SI Time is the most accurate measurement Scientific and fundamental researchTechnological and practical applications

11 Dennis D. McCarty, Evolution of Time Scales from astronomy to physicasl metrology, Metrologia 48 (2011), S132 – S144. The last 600 years of time measurement

12 Christiaan Huygens (1660) Accurate pendulum clock and the equation of time The last 600 years of time measurement Christiaan Huygens (1629 – 1695)

13 Longitude Act of 1714 John Harrison chronometers The last 600 years of time measurement

14 Greenwich meridian as interational reference (1884) The last 600 years of time measurement

15 First atomic clock at NPL (1957) The last 600 years of time measurement Louis Essen and his NPL Cs atomic clock

16 Atomic definition of the second, 1967 The last 600 years of time measurement The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom. Resolution 1, 13th CGPM, 1967

17 Atomic clocks era The last 600 years of time measurement Progress at one order of magnitud per decade

18 Ultracold matter and Cs fountain clocks The last 600 years of time measurement Progress at one order of magnitud per decade

19 Frequency combs and optical atomic clocks The last 600 years of time measurement Progress about four orders of magnitud per decade !!

20

21 Cs-133 Atomic Clocks The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom. Hiperfine structure Ground state

22 What is an atomic clock

23 Disciplined oscillators The basic concept of an atomic/optical clock  AA LL L LL L L  

24 Frequency Stability of an Atomic Clock o  Allan Deviation

25 Strategies to develop better atomic clocks Cold atoms and very long lifetime on excited states Optical Frequencies Large amount of atoms Large averaging times / robust systems

26 Nuclear Magnetic Resonance and atomic clocks

27 Spin invertion by the action of a rotating magnetic field Rabi´s Method z Constant magnetic field Larmour Frequency 00 

28 Spin invertion by the action of a rotating magnetic field Rabi´s Method z Constant magnetic field Larmour Frequency 00  Rotating magnetic field perpendicular to H 0 

29 Spin invertion by the action of a pulsed rotating magnetic field Ramsey´s Method z Constant magnetic field Larmour Frequency 00  Rotating magnetic field perpendicular to H 0 Pulsed! 

30 CampoMagnético Constante (Campo C) Contenedor con Cesio 133 Cavidad de Ramsey Campo Magnético Inhomogéneo (Campo B) Campo Magnético Inhomogéneo (Campo A) Filamento Incandescente (Ionizador) Detector Generador de Microondas Lazo de amarre Vacío Ramsey Method

31 First atomic clocks (1957)

32 Commercial available Cs atomic clock using the magnetic selection of N. Ramsey

33 Cs-133 Optical pumping Coulomb  850nm Spin-Spin 9.192631770 GHz F’=5 F’=4 F’=3 F’=2 F’=4 F’=3 F’=4 F’=3 251MHz 200MHz 150MHz 1167MHz + Zeeman Effect 11 sublevels 9 sublevels 7 sublevels 5 sublevels 9 sublevels 7 sublevels 9 sublevels 7 sublevels + INTERACTION ENERGY Spin-Orbit 6 2 P 3/2 6 2 P 1/2 6 2 S 1/2  100GHz  894nm + Not at scale

34 Ramsey method with optical pumping (1985) Cs Oven Pumping Laser Detection Laser Detector Ramsey Cavity Microwave Oscillator Phase lock loop

35 Optically pumped thermal Cs beam clock CENAM CsOp-2 180 Hz

36 Doppler Cooling A two quantum states model Energy E2E2 E1E1 Laboratory reference frame F = 0 -  0 v

37 R = F + k·v + …  0 L = F - k·v + …<< 0 Atom´s reference frame 0 Doppler Cooling A two quantum states model

38 Doppler limit Cesio-133 Sodio h  6,6  10 -34 J  s k B  1,3  10 -23 J/K Doppler Cooling A two quantum states model

39 Phys. Rev. Lett. 61, 169–172 (1988) [Issue 2 – 11 July 1988 ] Observation of atoms laser cooled below the Doppler limit Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, and William D. Phillips Electricity Division, National Bureau of Standards, Gaithersburg, Maryland 20899 Phillip L. Gould Department of Physics, University of Connecticut, Storrs, Connecticut 06268 Harold J. Metcalf Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 Received 18 April 1988 We have measured the temperature of a gas of sodium atoms released from ``optical molasses'' to be as low as 43±20 µK. Surprisingly, this strongly violates the generally accepted theory of Doppler cooling which predicts a limit of 240 µK. To determine the temperature we used several complementary measurements of the ballistic motion of atoms released from the molasses. ©1988 The American Physical Society

40 F=4 F´=5  852 nm Energy The Cs-133 atom as a two level quantum system

41 F=4 F´=5 m = +4 m = -4 m = 0 m = -5 m = +5 m = 0  852 nm 0 1 B / Gauss Not at escale Energy The Cs-133 atom as a multilevel quantum systems

42 Temperatures below the Doppler limit x 0 44 22 linear -- ++ -- z y m = -3/2 m = -1/2m = +1/2 m = +3/2 m = -1/2 m = +1/2 J = 1/2 J = 3/2

43 Stark effect g-½g-½ g+½g+½ 0 linear -- ++ -- Energy Position 88 z 0 443838 2238385858

44 z Energy 88 443838 22 5858 g-½g-½ g+½g+½ Sisyphus effect and temperatures below the Doppler limit

45 Frequnecy  E  t  h/4    t  1/4    1Hz 0  10 10 Hz  /  10 -15 Transition probability 0  Ramsey Method + ultracold Cs atoms

46 Cooling beams Detection laser Microwaves cavity Detector Optical molases Wayne M. Itano, Norman F. Ramsey, Accurate Measurement of Time, Scientific American, July 1993. Cs Fountain Clock (1990)

47 Resolution of the peak Wayne M. Itano, Norman F. Ramsey, Accurate Measurement of Time, Scientific American, 1993. Clock transition

48

49 33.0 cm22.0 cm 35.0 cm CENAM CsF-1 physical package

50 Cesium fountain clock CENAM CsF-1 MOT Optical systemPhysics package

51

52 TIME IS THE MOST POWERFUL METROLOGICAL VARIABLE JOHN HALL, Nobel Prize in Physics 2005

53 NO CONTABAN CON MI ASTUCIA!!

54 Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R.

55 The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom.

56 Horno de Cs Láser de bombeo Láser de detección Detector Cavidad de microondas CENAM thermal Cesium beam atomic clock 180 Hz

57 Rabi pedestal comparison between CENAM CsOP-1 and CENAM CsOP-2 Ramsey fringe line comparison between CENAM CsOP-1 and CENAM CsOP-2.

58 Cooling beams Detection laser Microwave cavity Detector Optical molases CENAM Cs Fountain Clock CENAM CsF-1  600 nk

59 33.0 cm22.0 cm 35.0 cm CENAM CsF-1 physical package

60 CsF-1 Frecuencia Probabilidad de transición CsOP-1 CsOP-2 CENAM Cesium clocks

61 CsF-1 Frecuencia Probabilidad de transición CsOP-1 CsOP-2 CsF-1 CENAM Cesium clocks


Download ppt "Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R."

Similar presentations


Ads by Google