Download presentation
Presentation is loading. Please wait.
Published byErik Mosley Modified over 9 years ago
1
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 1 Displays
2
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 2 Framebuffer [From Talton]
3
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 3 Cathode ray tube (CRT) First widely used electronic display –developed for TV in the 1920s–1930s [H&B fig. 2-2]
4
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 4 Raster CRT display Intensity modulated to produce image Originally for TV –(continuous analog signal) [H&B fig. 2-7]
5
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 5 CRT refresh images
6
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 6 Interlacing vs progressive scan
7
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 7 Interlacing vs progressive scan
8
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 8 Interlacing vs progressive scan
9
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 9 Vector vs raster scan Arthur Clokey, the creator of Gumby, trying out NYIT CGL's BBOP 3D keyframe animation system using an E & S vector display, 1984. Tempest
10
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 10 LCD flat panel or projection display Principle: block or transmit light by twisting its polarization Intermediate intensity levels possible by partial twist Fundamentally raster technology [H&B fig. 2-16]
11
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 11 LCD
12
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 12 Color displays Humans are trichromatic –match any color with blend of three Additive color –blend images by sum –R, G, B make good primaries [cs417 S02 slides] redblue green yellowcyan magenta white
13
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 13 Color displays CRT: phosphor dot pattern to produce finely interleaved color images LCD: interleaved R,G,B pixels [H&B fig. 2-10]
14
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 14
15
Triads and color mixing SMPTE color bars closeup on a Sony Trinitron monitor Slide from Marc Levoy
16
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 16 DLP
17
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 17
18
Triads versus pixels antialiased font (Adobe Acrobat) subpixel font (Adobe Cooltype) integral pixel font (IBM LCD) integral pixel font (Sony Trinitron) Slide from Marc Levoy
21
KindleiPad http://www.bit-101.com/blog/?p=2722 At 26x
22
KindleiPad http://www.bit-101.com/blog/?p=2722 At 400x
23
NewsPrint http://www.bit-101.com/blog/?p=2722
24
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 24
25
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 25 How much spatial resolution (pixels) do we need?
26
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 26 How much temporal resolution (frames per second) do we need? dark bright (fps)
27
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 27 Transfer function of display Say pixel value is 123 –this means the intensity is 123. 123 what? 100% 0 0255 like this? (voltage) (frame buffer value) (light) (photons)
28
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 28
29
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 29
30
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 30 Why nonlinear intensity? ~0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00 ~0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Closer to ideal perceptually uniform exponential
31
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 31 Checkerboard test n = 64 n = 128 n = 192 I = 0.25I = 0.5I = 0.75
32
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 32
33
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 33 Gamma correction [Philip Greenspun] OKcorrected for g lower than display corrected for g higher than display
34
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 34 8 bpp (256 grays) 7 bpp (128 grays) 6 bpp (64 grays) 5 bpp (32 grays) 4 bpp (16 grays) 3 bpp (8 grays) 2 bpp (4 grays) 1 bpp (2 grays) Quantization [Philip Greenspun]
35
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 35 You make a black and white printer. You don’t want your pictures to come out like this. Design a system for converting grayscale images to black/white that will look better than this. (You can only use black/white, what value goes in each pixel?)
36
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 36 Ordered dither example Produces regular grid of compact dots [Philip Greenspun]
37
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 37 Diffusion dither Produces scattered dots with the right local density [Philip Greenspun]
38
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 38
39
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 39
40
Cornell CS465 Fall 2004 Lecture 2© 2004 Steve Marschner 40
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.