Download presentation
1
Regression with a Binary Dependent Variable
Chapter 11 Regression with a Binary Dependent Variable
2
Regression with a Binary Dependent Variable (SW Chapter 11)
3
Example: Mortgage denial and race The Boston Fed HMDA data set
4
The Linear Probability Model (SW Section 11.1)
5
The linear probability model, ctd.
6
The linear probability model, ctd.
7
Example: linear probability model, HMDA data
8
Linear probability model: HMDA data, ctd.
9
Linear probability model: HMDA data, ctd
10
The linear probability model: Summary
11
Probit and Logit Regression (SW Section 11.2)
15
Probit regression, ctd.
16
STATA Example: HMDA data
17
STATA Example: HMDA data, ctd.
18
Probit regression with multiple regressors
19
STATA Example: HMDA data
20
STATA Example, ctd.: predicted probit probabilities
21
STATA Example, ctd.
22
Logit Regression
23
Logit regression, ctd.
24
STATA Example: HMDA data
25
Predicted probabilities from estimated probit and logit models usually are (as usual) very close in this application.
26
Example for class discussion:
29
Hezbollah militants example, ctd.
30
Predicted change in probabilities:
31
Estimation and Inference in Probit (and Logit) Models (SW Section 11
32
Probit estimation by nonlinear least squares
33
Probit estimation by maximum likelihood
34
Special case: the probit MLE with no X
38
The MLE in the “no-X” case (Bernoulli distribution), ctd.:
39
The MLE in the “no-X” case (Bernoulli distribution), ctd:
40
The probit likelihood with one X
41
The probit likelihood function:
42
The Probit MLE, ctd.
43
The logit likelihood with one X
44
Measures of fit for logit and probit
45
Application to the Boston HMDA Data (SW Section 11.4)
46
The HMDA Data Set
47
The loan officer’s decision
48
Regression specifications
52
Table 11.2, ctd.
53
Table 11.2, ctd.
54
Summary of Empirical Results
55
Remaining threats to internal, external validity
56
Summary (SW Section 11.5)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.