Download presentation
Presentation is loading. Please wait.
1
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 7 Roots of Equations Bracketing Methods
2
Last Time The Problem Define Function c must satisfy c is the ROOT of the equation
3
Last Time Classification Methods BracketingOpen Graphical Bisection Method False Position Fixed Point Iteration Newton-Raphson Secand
4
Last Time Graphical Methods c f(c) v=10 m/s t=3 sec m=65 kg g=9.81
5
Last Time Graphical Methods No Roots Even Number of Roots Lower and Upper Bounds of interval yield values of same sign
6
Last Time Graphical Methods Lower and Upper Bounds of interval yield values of opposite sign Odd number of Roots
7
Last Time Bisection Method Choose Lower, x l and Upper x u guesses that bracket the root xlxl xuxu
8
Last Time Bisection Method Calculate New Estimate x r and f(x r ) xlxl xuxu x r =0.5(x l +x u )
9
Last Time Bisection Method Define New Interval that Brackets the Root Check sign of f(x l )*f(x r ) and f(x u )*f(x r ) xlxl xuxu Previous Guess xuxu
10
Last Time Bisection Method Repeat until convergence xlxl xuxu Previous Guess x r =0.5(x l +x u )
11
Last Time Bisection Method Check Convergence Root = If Error
12
Objectives Master methods to compute roots of equations Assess reliability of each method Choose best method for a specific problem REGULA FALSI Method (False Position)
13
False Position Method xlxl xuxu x r =0.5(x l +x u ) Recall Bisection Method No consideration on function values
14
False Position Method f(x l ) f(x u ) xlxl xuxu xrxr NEW ESTIMATE
15
False Position Method f(x l ) f(x u ) xlxl xuxu xrxr
16
False Position Method f(x l ) f(x u ) xlxl xuxu xrxr From Similar Triangles
17
False Position Method
19
Add and subtract New Estimate
20
Loop x old =x r Error=100*abs(x-x old )/x r Sign=f(x l )*f(x r ) Sign x u =x r f u =f(x u ) x l =x r f l =f(x l ) Error=0 Error<E all ROOT=x r FALSE <0>0 f u =f(x u ), f l =f(x l )
21
False Position Typically Faster Convergence than Bisection
22
False Position Not Efficient in this Case
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.