Download presentation
1
Anterior-posterior patterning in Drosophila
2
The fly body plan: Each segment has a unique identity
3 head The fly body plan: Each segment has a unique identity and produces distinct structures 3 thorax 8 abdomen
3
Figures\Chapter09\DevBio7e09053.jpg
4
Mutations affecting the antero-posterior axis
3 independent maternal systems: anterior, posterior, terminal fate map larva triple mutants active systems active systems wild-type A P T single mutants double mutants - P T - P - anterior bicoid A - T - - T posterior oskar A P - A - - terminal torso additive phenotypes
5
Maternal effect mutations
Figures\Chapter09\DevBio7e09t010.jpg
6
Zygotic effect mutations
Figures\Chapter09\DevBio7e09t020.jpg
7
bicoid mutant phenotype
Embryo from wild-type mother Embryo from bicoid mother Figures\Chapter09\DevBio7e09130.jpg Wild-type Bicoid promotes anterior fates and inhibits posterior fates.
8
Anterior: bicoid is required for head and thorax
Wild type bicoid mutant blastoderm fate map head + thorax abdomen abdomen
9
Bicoid mRNA localization in embryo (tethered to microtubules)
Figures\Chapter09\DevBio7e09141.jpg
10
Nuclei divide without cell division in Drosophila to produce a syncytial blastoderm embryo
Figures\Chapter09\DevBio7e09010.jpg Fig. 9.1
11
Bicoid protein gradient in syncytial blastoderm embryo
- diffuses after translation from localized mRNA - protein unstable Figures\Chapter09\DevBio7e09142.jpg
12
Transplantation of egg cytoplasm
An organizer of the anterior-posterior pattern is located at the anterior pole wt rescue of pattern wt head in the center polarity reversal wt thorax at posterior pole polarity reversal abdomen only polarity normal
13
bicoid mRNA induces head and thorax
bicoid (bcd) gene encodes a homeo-domain transcription factor
14
Injection of bicoid mRNA:
anterior (head) structures at site of injection & reorganization of polarity no head
15
Figures\Chapter09\DevBio7e09152.jpg
16
Bicoid protein: transcriptional and translational regulator
zygotic target genes maternal target mRNA (promotes anterior fates) (inhibits posterior fates)
17
Transplantation of egg cytoplasm
Posterior cytoplasm also has polarizing activity wt rescue of pattern wt head in the center polarity reversal wt thorax at posterior pole polarity reversal wt double abdomen polarity reversal abdomen only polarity normal
18
Mutations affecting the antero-posterior axis
3 independent maternal systems: anterior, posterior, terminal fate map larva triple mutants active systems active systems wild-type A P T single mutants double mutants - P T - P - anterior bicoid A - T - - T posterior oskar A P - A - - terminal torso additive phenotypes
19
Nanos is the maternal effector of the posterior system
mutant rescued rescued rescue of all posterior-system mutants by injection of nanos mRNA
20
Embryonic polarity genes
Figures\Chapter09\DevBio7e09101.jpg
21
Figures\Chapter09\DevBio7e09102.jpg
22
Anterior-Posterior pattern formation in flies
Figures\Chapter09\DevBio7e09081.jpg
23
The Bcd gradient is converted into domains of gene expression
Bcd protein binds differentially to enhancers of target genes Different thresholds of Bcd concentration are required to turn on different genes low affinity high affinity target genes are zygotically expressed Gap genes
24
Bcd gradient and expression domains of target genes
bcd mRNA Bcd protein target genes
25
Expression patterns of proteins encoded by Gap genes
Bicoid and Nanos regulate Gap gene expression Figures\Chapter09\DevBio7e09221.jpg Expression patterns of proteins encoded by Gap genes
26
Gap gene mutants lack different body regions
27
Gap gene mutants lack different body regions
Wild type Krüppel hunchback knirps
28
The gap genes regulate each other and form domains with distinct combinations of gene expression.
Hunchback Krüppel
29
Figures\Chapter09\DevBio7e09222.jpg
30
Anterior-Posterior pattern formation in flies
Figures\Chapter09\DevBio7e09081.jpg
31
Figures\Chapter09\DevBio7e09201.jpg
32
Wild type fushi tarazu mutant
Pair-rule mutants Wild type fushi tarazu mutant Figures\Chapter09\DevBio7e09211.jpg
33
Even-skipped expression pattern
34
Modularity of the Drosophila even-skipped promoter
08_18_reporter.gene.jpg 08_18_reporter.gene.jpg
35
Regulation of expression stripe no. 2 of Even-skipped (eve)
hunchback giant eve stripe #2 Krüppel repressor activator parasegment 1 2 3 4 5 multiple binding sites in enhancer of eve repressors activators
36
Regulation of the Second Stripe of Transcription from the even-skipped Gene
Figures\Chapter09\DevBio7e09242.jpg
37
Regulation of the even-skipped gene
Figures\Chapter09\DevBio7e09230.jpg
38
Fushi tarazu expression
Refinement of expression domains over time early Fushi tarazu expression Figures\Chapter09\DevBio7e09250.jpg late Eve, Ftz expression
39
Refined expression domains in distinct cell rows
40
Anterior-Posterior pattern formation in flies
Figures\Chapter09\DevBio7e09081.jpg
41
Segment polarity mutants
Figures\Chapter09\DevBio7e09202.jpg
42
Segment polarity mutants
43
Wingless signaling specifies cell fates in
the ventral epidermis Anterior cells make Hair Posterior cells make Naked cuticle Wild type arm mutant
44
Segment polarity genes – 14 stripes
13 12 A 11 ap 10 L fg 9 hg 8 1 7 2 3 6 4 5 Expression of segment polarity gene wingless
45
Segments and Parasegments
Figures\Chapter09\DevBio7e09190.jpg
46
The Even-skipped and Fushi tarazu pair-rule transcription factors activate the segment-polarity gene Engrailed
47
Intercellular feedback maintains pair-rule gene expression states
Figures\Chapter09\DevBio7e09262.jpg
48
Intercellular feedback maintains pair-rule gene expression states
=Wnt Figures\Chapter09\DevBio7e09263.jpg
49
Wnt signaling pathway - + - + - + + - - + - +
50
Gradients of Wingless and Hedgehog pattern each segment
51
Anterior-Posterior pattern formation in flies
Figures\Chapter09\DevBio7e09081.jpg
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.