Presentation is loading. Please wait.

Presentation is loading. Please wait.

Alexandre Faure, Claire Rist, Yohann Scribano, Pierre Valiron, Laurent Wiesenfeld Laboratoire d’Astrophysique de Grenoble Mathematical Methods for Ab Initio.

Similar presentations


Presentation on theme: "Alexandre Faure, Claire Rist, Yohann Scribano, Pierre Valiron, Laurent Wiesenfeld Laboratoire d’Astrophysique de Grenoble Mathematical Methods for Ab Initio."— Presentation transcript:

1 Alexandre Faure, Claire Rist, Yohann Scribano, Pierre Valiron, Laurent Wiesenfeld Laboratoire d’Astrophysique de Grenoble Mathematical Methods for Ab Initio Quantum Chemistry, Nice, 14th november 2008 Potential energy surfaces for inelastic collisions

2 Outline 1. Astrophysical context 2. Determining, monitoring and fitting multi- dimensional PESs 3. Computing scattering cross sections 4. Conclusions

3 1. Molecules in space

4 New windows on the « Molecular Universe » Herschel (2009) 4905000 GHz ALMA (2010) 30950 GHz

5 RTN FP6 « Molecular Universe » (2004-2008)

6 Astrochemistry ? 1. 90% hydrogen 2. Low temperatures (T = 10 – 1,000K) 3. Ultra-low densities (n H ~ 10 3 -10 10 cm -3 ). Astronomer’s periodic table, adapted from Benjamin McCall

7 A very rich chemistry ! Smith (2006)

8 Molecules as probes of star formation Lada et al. (2003)

9 Challenge: modelling non-LTE spectra Electric-dipolar transitions obey strict selection rules:  J =  1 Collisional transitions obey « propensity » rules:  J =  1,  2, etc. Rotational energy 0 6B 12B 2B J=0 J=2 J=1 J=3 J(J+1)B radiativecollisional A ij ~ C ij

10 Wanted: Collisional rate coefficients M(j, v) + H 2 (j 2, v 2 )  M(j’, v’) + H 2 (j 2 ’, v 2 ’) Collision energies from ~ 1 to 1,000 cm -1, i.e. rotational excitation dominant As measurements are difficult, numerical models rely on theoretical calculations.

11 2. Computing PESs

12 Born-Oppenheimer approximation Electronic problem Orbital approximation Hartree-Fock (variational principle) Electronic correlation (configuration interaction) Nuclear problem « Electronic » PES Quantum dynamics: close- coupling, wavepackets Semi or quasi-classical dynamics: trajectories

13 Electronic structure calculations Hartree- Fock Full CI Hartree- Fock limit « Exact » solution Infinite basis Improving electronic correlation Improving the basis set

14 van der Waals interactions The interaction energy is a negligible fraction of molecular energies: E(A-B) = E(AB) – E(A) –E(B) For van der Waals complexes, the bonding energy is ~ 100 cm -1 Wavenumber accuracy (~ 1 cm -1 ) required !

15 State-of-the-art: R12 theory

16 CO-H 2 R12 versus basis set extrapolation Wernli et al. (2006)

17 H 2 O-H 2 Towards the basis set limit Double  quality R12 Faure et al. (2005); Valiron et al. (2008)

18 H 2 O-H 2 ab initio convergence Ab initio minimum of the H 2 O-H 2 PES as a function of years

19 Computational strategy where Faure et al. (2005); Valiron et al. (2008)

20 Expanding 5D PES

21 Scalar products : Sampling « estimator »: Mean error: In preparation

22 Convergence of ||S -1 || (48 basis functions) Rist et al.,in preparation

23 Convergence of e i (48 basis functions) Rist et al.,in preparation

24 Application to H 2 O-H 2 wavenumber accuracy ! Valiron et al. (2008)

25 2D plots of H 2 O-H 2 PES Valiron et al. (2008)

26 Equilibrium vs. averaged geometries The rigid-body PES at vibrationally averaged geometries is an excellent approximation of the vibrationally averaged (full dimensional) PES Faure et al. (2005); Valiron et al. (2008)

27 Current strategy Monomer geometries: ground-state averaged Reference surface at the CCSD(T)/aug-cc-pVDZ (typically 50,000 points) Complete basis set extrapolation (CBS) based on CCSD(T)/aug-cc-pVTZ (typically 5,000 points) Monte-Carlo sampling, « monitored » angular fitting (typically 100-200 basis functions) Cubic spline radial extrapolation (for short and long-range)

28 H 2 CO-H 2 Troscompt et al. (2008)

29 NH 3 -H 2 Faure et al., in preparation

30 SO 2 -H 2 Feautrier et al. in preparation

31 HC 3 N-H 2 «Because of the large anisotropy of this system, it was not possible to expand the potential in a Legendre polynomial series or to perform quantum scattering calculations. » (S. Green, JCP 1978) Wernli et al. (2007)

32 Isotopic effects: HDO-H 2  =21.109 o Scribano et al., in preparation 

33 Isotopic effects: significant ? Scribano et al., in preparation

34 2. Scattering calculations

35 Close-coupling approach Schrödinger (time independent) equation + Born-Oppenheimer PES Total wavefunction Cross section and S-matrix S 2 = transition probability

36 Classical approach Hamilton’s equations Cross section and impact parameter Statistical error Rate coefficient (canonical Monte-Carlo)

37 CO-H 2 Impact of PES inaccuracies Wernli et al. (2006)

38 Inaccuracies of PES are NOT dramatically amplified Wavenumber accuracy sufficient for computing rates at T>1K Note: the current CO-H 2 PES provides subwavenumber accuracy on rovibrational spectrum ! (see Jankowski & Szalewicz 2005) Lapinov, private communicqtion, 2006 CO-H 2 Impact of PES inaccuracies

39 H 2 O-H 2 Impact of PES inaccuracies Phillips et al. equilibrium geometries CCSD(T) at equilibrium geometries CCSD(T)-R12 at equilibrium geometries CCSD(T)-R12 at averaged geometries Dubernet et al. (2006)

40 H 2 O-H 2 Ultra-cold collisions Scribano et al., in preparation

41 Isotopic effects Scribano et al., in preparation Yang & Stancil (2008)

42 HC 3 N-H 2 Classical mechanics as an alternative to close-coupling method ? T=10K

43 Wernli et al. (2007), Faure et al., in preparation T=10K T=100K o-H 2 /p-H 2 selectivity due to interferences Rotational motion of H 2 is negligible at the QCT level As a result, o-H 2 rates are very similar to QCT rates

44

45 Faure et al. (2006)

46 Experimental tests Total (elastic + inelastic) cross sections Differential cross sections Pressure broadening cross sections Second virial coefficients Rovibrational spectrum of vdW complexes

47 CO as a benchmark Carty et al. (2004) T=294K T=15K Jankowski & Szalewicz (2005) T=294K T=15K

48 Cappelletti et al., in preparation H 2 O-H 2 total cross sections

49 para 0 00 → 1 11 H2OH2O H2H2 min max Ter Meulen et al., in preparation H 2 O-H 2 differential cross sections

50 Conclusions Recent advances on inelastic collisions PES Ab initio: CCSD(T) + CBS/R12 Fitting: Monte-Carlo estimator Cross section and rates Wavenumber accuracy of PES is required but sufficient Success and limits of classical approximation Future directions « Large » polyatomic species (e.g. CH 3 OCH 3 ) Vibrational excitation, in particular « floppy » modes


Download ppt "Alexandre Faure, Claire Rist, Yohann Scribano, Pierre Valiron, Laurent Wiesenfeld Laboratoire d’Astrophysique de Grenoble Mathematical Methods for Ab Initio."

Similar presentations


Ads by Google