Download presentation
Presentation is loading. Please wait.
Published byGriffin Allison Modified over 9 years ago
1
SUBMILLIMETER-WAVE ROTATIONAL SPECTRA OF DNC T. Amano Department of Chemistry and Department of Physics and Astronomy The University of Waterloo
2
Background Several years ago, the dissociative recombination processes of HCNH + were investigated by observing the submm-wave lines of HCN and HNC. Similar investigations were carried out for DCND +, DCN, and DNC. The vibrational temperatures for the stretching vibrational modes were found to be high, in particular for ν 3 of DNC. Chemistry, Okayama University
3
HNC DNC ν 1 1300 K 1000 K ν 2 400 K 400 K ν 3 1500 K 4000 K Vibrational temperature
4
Rotational spectroscopy Laboratory identification Creswell et al [1976], Blackman et al [1976] Identification in interstellar space Godfrey et al [1977], Snell and Wooten [1977] More laboratory work Okabayashi and Tanimoto [1993]; Gnd, ν 1, ν 2, ν 3 Brünken et al [2006]; ~ 2 THz, Gnd, ν 2 Bechtel et al [2006]; discharge nozzle source J = 1 – 0, 2 – 1, 3 – 2 hfs Vibrational spectroscopy Milligan, Jacox [1967]; ν 1, ν 2, ν 3 Maki, Sams [2001]; ν 1 ν 1 2787.1 cm -1 ( 2769 ) ν 2 374 ( 365 ) ν 3 1940
5
Backward-wave oscillators ( BWO ) as radiation sources. 280 ~ 860 GHz Extended negative glow discharge source. (Magnetic field: 160 G). Double modulation. CD 4 1 ~ 2 mTorr N 2 ~ 15 mTorr Cooling the cell with liquid nitrogen J = 5 – 4, 6 – 5, 7 – 6, 8 – 7, 9 – 8, 10 – 9, 11 – 10 Experimental Conditions
6
Overview of signals J = 9 - 8 Chemistry, Okayama University
7
v-dependence of B and D ∆B = B v-1 – B v
8
Observed frequencies for unperturbed states 1- 0 75829.460 a 38 [75350.607] b [74869.085] [73897.098] [72912.303] 2- 1 [151657.189] [150699.557] [149736.511] [147792.532] [145822.938] 3- 2 227481.655 a 11 [226045.193] [224600.621] [221684.641] [218730.233] 4- 3 303301.087 a -45 [301385.859] [299459.755] [295571.763] [291632.520] 5- 4 379114.002(5) c 4 376719.903(10) 3 374312.263(10) 7 369452.251(10) 17 [364528.129] 6- 5 454918.587(5) -1 452045.659(10) 0 449156.465(10) -3 443324.373(10) -20 437415.392(10) 7- 6 [530713.247] [527361.481] [523990.734] [517186.580] [510292.638] 8- 7 606496.297(10) -27 602665.701(10) -12 598813.390(10) -11 591037.135(10) 1 [583158.199] 9- 8 682266.161(10) -4 677956.713(10) 10 673622.816(10) 3 664874.404(15) 7 656010.396(20) -11 10- 9 758021.128(5) 9 753232.797(10) 0 748417.328(10) 9 738696.717(20) 8 728847.604(20) 13 11-10 833759.533(5) -4 828492.343(10) -2 823195.264(10) -5 812502.405(20) -8 801668.080(20) -4 Chemistry, Okayama University (001) (002) (003) (005) (007) ν/MHz Δ/kHz ν/MHz Δ/kHz ν/MHz Δ/kHz ν/MHz Δ/kHz ν/MHz Δ/kHz a Okabayashi and Tanimoto. The measurement accuracy for these lines are estimated to be 50 kHz. b Values in square brackets indicate the calculated frequencies. c Values in parentheses indicate the estimated measurement uncertainties.
9
Observed frequencies for perturbed states 1- 0 [74384.5] a [73406.&37] [72415.06] 2- 1 [148767.3] [146811.08] [144828.42] 3- 2 [223146.8] [220212.46] [217238.37] 4- 3 [297521.5] [293608.86] [289643.21] 5- 4 371889.449(10) b -57 -561 [366998.60] [362041.27] 6- 5 446249.374(10) 62 -367 440379.974(10) -28 40 434430.899(40) 29 444 7- 6 [520599.2] [513751.40] [506810.36] 8- 7 594937.510(10) 17 -129 587111.198(10) 85 135 579177.949(50) -159 -162 9- 8 669262.439(10) -36 -42 660457.986(20) 542 513 651532.619(40) 107 -68 10- 9 743572.432(10) 5 65 733787.079(20) -1618 -1814 723871.923(60) -72 -275 11-10 817865.608(10) 5 -25 807104.428(30) 1262 772 [796195.&01] Chemistry, Okayama University (004) (006) (008) J'-J'‘ obs/MHz (o-c)/kHz obs/MHz (o-c)/kHz obs/MHz (o-c)/kHz I II I II I II a Values in square brackets indicate the calculated frequencies. b Values in parentheses indicate the estimated measurement uncertainties.
10
Molecular constants for DNC in the (00v) state (000) 38152.98807(36) a 68.97119(281) a 0.1984(37) a (001) 37914.8491(13) b 68.993(19) 0.181(84) [37914.8639(44)] c [69.639(162)] c (002) 37675.4415(15) 69.037(21) 0.191(87) (003) 37434.6807(15) 69.111(21) 0.249(88) (004) 37192.3690(86) 68.242(118) (005) 36948.6873(29) 69.286(44) (006) 36703.324(115) 69.24(176) (007) 36456.2909(27) 69.560(42) (008) 36207.674(60) 71.12(94) Chemistry, Okayama University a Bechtel, Steeves, Field, Astrophys.J. 649, L53 (2006) b The values in parentheses indicate one standard errors from the least-squares fit. c Okabayashi, Tanimoto, J. Chem. Phys. 99, 3268 (1993) State B v /MHz D v /kHz H v /Hz
11
Rotational transition frequencies and molecular constants for DNC in the (100) state. 1 - 0 75704.545 a 31 2 - 1 [151407.377] b 3 - 2 227106.935 a -8 4 - 3 302801.600 a 43 5 - 4 378489.568(10) c -5 6 - 5 454169.348(10) 5 7 - 6 [529839.220] 8 - 7 605497.552(20) -7 9 - 8 681142.719(20) 4 10 - 9 756773.047(20) -2 11 - 10 832386.919(20) 1 Chemistry, Okayama University B/MHz 37852.3948(11) 37852.3907(110) D/kHz 68.761(18) 68.481(398) H/Hz 0.326(82) ----- J’ – J” ν/MHz Δ/kHz a Okabayashi, Tanimoto (1993). b Calculated frequencies. c Estimated measurement uncertainties This work OT (1993) a
12
Why is the vibrational excitation of the ν 3 mode of DNC so high? The origin of this conspicuous excitation of the ν 3 mode of DNC is not obvious. However, it should be closely related to mechanism of the dissociation of HCNH and DCND. Apparently the difference in the masses of the departing H/D may be a factor causing this difference, but the vibrational temperature for ν 3 of DCN is not particularly high, about 1000 K. When the D atom departs from the D-C side, apparently the C-N vibration is highly excited. On the other hand, when the D-N bond is broken, not much excitation of the C-N vibration occurs. Chemistry, Okayama University
13
Conclusion The dissociative recombination reaction of DCND + with electrons is thought to be a dominant channel to produce DNC in highly excited vibrational states; the rotational lines in levels up to (008) are observed. The rotational and centrifugal distortion constants are determined for these states along with those for the (100) state. The measurement accuracy is high enough to determine some higher order vibration-rotation interaction constants. Perturbed states (004), (006), (008) Tv ~ 4000 K
14
University of Waterloo Acknowledgment NSERC (Natural Science and Engineering Research Council of Canada)
15
Chemistry, Okayama University
16
Waterloo sub-mm system Russian BWO(Backward-wave oscillator) 270-890 GHz ~1 mW stabilized, using double phase-lock loop Double modulation technique frequency-discharge frequency-magnetic field extended negative glow discharge
17
Double modulation sub-mm system at Waterloo
18
Fundamental frequencies ( in cm -1 ) HNC ν 1 3652.7 ( Maki, Melleu 2001 ) ν 2 462.7 ν 3 2023.9 DNC ν 1 2787.1 ( Maki, Sams, 1981) ν 2 374 ( Milligan, Jacox, 1967 ) ν 3 1940 ( Milligan, Jacox, 1967 ) Chemistry, Okayama University
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.