Presentation is loading. Please wait.

Presentation is loading. Please wait.

Polymorphism Discrete Mathematics and Its Applications Baojian Hua

Similar presentations


Presentation on theme: "Polymorphism Discrete Mathematics and Its Applications Baojian Hua"— Presentation transcript:

1 Polymorphism Discrete Mathematics and Its Applications Baojian Hua bjhua@ustc.edu.cn

2 Variables and Types Languages such as C, C++ or Java are called statically-typed As opposed to Basic, Lisp, etc. A relatively strict semantics on variables declaration and use Each variable must be declared with a static type Variables declared before use Uses should conform to types

3 Examples // Examples from C: int i; i = 99; struct s { int x; int y; }; struct s pt; // compiler complains: i = pt; // Examples from Java: int i; i = 99; class S { int x; int y; } S pt = new S (); // compiler complains: i = pt;

4 What ’ s Polymorphism? A variable of polymorphic type could hold any type of values poly: various morphism: shapes How to declare and use such kind of variables?

5 What We Want? // Suppose we have a variable x which is // polymorphic, we may write: x = 99; x = 3.14; x = “hello”; // But how to declare such a variable in // statically typed language such as C? // More specific, what x’s “type” should be? type x;

6 Difficulties In C C++ or Java, the compiler automatically allocates space for every declared variable the size of that space is calculated statically at compile-time the detailed data layout is determined

7 Difficulties // Examples: int i; // 4 bytes double f; // 8 bytes struct s { int x; int y; }; struct s pt; // 8 bytes // So it seems that we can never declare such // a polymorphic variable in C …

8 The Magic The magic is that: if we want to make a variable x hold any type (size) of data d, then the only way is not to put this data d in the variable x.

9 Try #1 // Hummm, thus x must be a pointer (x holds some // data d, but the data d is not in x itselft--- // via an indirection). // Try #1: int *p; p = (int *)malloc (sizeof(*p)); *p = 88; // but x it seems that p could only point to // integer data (of size 4). // How to make p point to data of other size? p 88

10 Try #2 // Try #2: make p point to struct data: int *p; // we want to point to a Point2d p = (int *)malloc (sizeof(struct s)); p->x = 3; p->y = 4; // Try this demo … // What happened here? p 3 4

11 Try #2 // Try #3: let’s cheat the compiler: int *p; p = (int *)malloc (8); ((Point2d *)p)->x = 3; ((Point2d *)p)->y = 4; // Try this demo … p

12 Moral So, every pointer is essentially a polymorphic value could point to value of any type (and size) the trick is the ugly type conversion (cast) of course, should be consistent But the type “ int * ” is a little misleading But recall C ’ s early convention (char *) now C offers “ void * ” compiler emits more meaningful error message

13 Void * // The use of “void *” struct s { int x; int y; }; void *p; p = malloc (sizeof (struct s)); ((struct s *)p)->x = 3; ((struct s *)p)->y = 4; // Try this demo … p

14 Polymorphic Data Structures Structure: relationships linear, tree, graph, hash, … Data structures: relationships between data not the data themselves Polymorphic data structures data are polymorphic Next, I ’ ll take linear list as a running example

15 Linked List #1 (Integer List) typedef struct linkedListStruct *linkedList; struct linkedListStruct { int data; linkedList next; }; void insertHead (linkedList l, int data); int exists (linkedList l, int data);

16 Functions void insertHead (linkedList l, int data) { linkedList t = (linkedList)malloc (sizeof (*t)); t->data = data; t->next = l->next; l->next = t; return; } data next data next data next l …

17 Functions int exists (linkedList l, int data) { linkedList temp = l->next; while (temp) { if (temp->data == data) // equality test! return 1; temp = temp->next; } return 0; } data next data next data next l …

18 Client Code #include “linkedList.h” … linkedList list = newLinkedList (); for (int i=0; i<10; i++) { insertHead (list, i); } exists (list, 5); exists (list, 50);

19 Linked List #2 (Double List) typedef struct linkedListStruct *linkedList; struct linkedListStruct { double data; linkedList next; }; void insertHead (linkedList l, double data); int exists (linkedList l, double data);

20 Functions void insertHead (linkedList l, double data) { linkedList t = (linkedList)malloc (sizeof (*t)); t->data = data; t->next = l->next; l->next = t; return; }

21 Functions int exists (linkedList l, double data) { linkedList temp = l->next; while (temp) { if (temp->data == data) // equality? return 1; temp = temp->next; } return 0; }

22 Client Code #include “linkedList.h” … linkedList list = newLinkedList (); for (int i=0; i<10; i++) { insertHead (list, (double)i); } exists (list, 5.0); exists (list, 50.0);

23 Linked List #3 (Point List) typedef struct linkedListStruct *linkedList; struct linkedListStruct { struct s data; linkedList next; }; void insertHead (linkedList l, struct s data); int exists (linkedList l, struct s data);

24 Functions void insertHead (linkedList l, struct s data) { linkedList t = (linkedList)malloc (sizeof (*t)); t->data = data; t->next = l->next; l->next = t; return; }

25 Functions int exists (linkedList l, struct s data) { linkedList temp = l->next; while (temp) { if (temp->data == data) // equality? return 1; temp = temp->next; } return 0; }

26 Client Code #include “linkedList.h” … linkedList list = newLinkedList (); for (int i=0; i<10; i++) { insertHead (list, cookPoint(i, i*i)); } struct s pt1 = cookPoint (5, 5*5); struct s pt2 = cookPoint (50, 50*50); exists (list, pt1); exists (list, pt2);

27 Linked List #4: polymorphic list typedef void *poly; typedef struct linkedListStruct *linkedList; struct linkedListStruct { poly data; linkedList next; }; void insertHead (linkedList l, poly data); int exists (linkedList l, poly data);

28 Functions void insertHead (linkedList l, poly data) { linkedList t = (linkedList)malloc (sizeof (*t)); t->data = data; t->next = l->next; l->next = t; return; }

29 Functions int exists (linkedList l, poly data) { linkedList temp = l->next; while (temp) { if (temp->data == data) // Correct??? return 1; temp = temp->next; } return 0; }

30 Client Code #1 #include “linkedList.h” … linkedList list = newLinkedList (); for (int i=0; i<10; i++) { insertHead (list, ???); } We should turn data into a pointer, and link the pointer here!

31 Client Code #1 // “integers” list #include “linkedList.h” … linkedList list = newLinkedList (); int *p; for (int i=0; i<10; i++) { p = (int *)malloc (sizeof (*p)); *p = i; insertHead (list, p); }

32 Client Code #1 // “integers” list #include “linkedList.h” … linkedList list = newLinkedList (); int *p; for (int i=0; i<10; i++) { p = (int *)malloc (sizeof (*p)); *p = i; insertHead (list, p); } p = (int *)malloc (sizeof (int)); *p = 5; exists (list, p);

33 Client Code #2 // “doubles” list #include “linkedList.h” … linkedList list = newLinkedList (); double *p; for (int i=0; i<10; i++) { p = (double *)malloc (sizeof (*p)); *p = (double)i; insertHead (list, p); }

34 Client Code #3 // “point” list #include “linkedList.h” … linkedList list = newLinkedList (); struct s *p; for (int i=0; i<10; i++) { p = (struct s *)malloc (sizeof (*p)); *p = cookPoint (i, i*i); insertHead (list, p); } // The burden is shifted to the client code!

35 Pros. and Cons. of Polymorphism Pros: code reuse: write once, use in arbitrary contexts ADT: data structures won ’ t change client data (won ’ t know) Cons: Inconsistency (safety issues) Complexity Efficiency We ’ d discuss cons. issues next

36 Problem #1: Inconsistency (Safety Issues) #include “linkedList.h” … linkedList list = newLinkedList (); int *p; for (int i=0; i<10; i++) { p = (int *)malloc (sizeof (int)); *p = i; insertHead (list, p); } // Can we do this? double *f = (double *)listGetHeadData (list); // ever worse: void (*fp)() = (void (*)())listGetHeadData (list); fp ();

37 Cure to Problem #1: Inconsistency (Safety Issues) C has no built-in static or dynamic checking against such inconsistency Runtime error segment fault, core dumped, Or even worse C programmers ’ duty to prevent these! Important: always keep invariants of our data structures in mind! Ask yourself: what ’ s the type?

38 Problem #2: Complexity int exists (linkedList l, void *data) { linkedList temp = l->next; while (temp) { if (temp->data == data) // Right??? return 1; temp = temp->next; } return 0; }

39 Equality Testing // Recall the definition of polymorphic variables: void *p, *q; // We want to write a function int equals (void *p, void *q); // to compare Contents! Not address! // How to implement this? pq

40 Try #1 int equals (void *p, void *q) { return (p==q); // right? } pq

41 Try #2 int equals (void *p, void *q) { return (*p==*q); // right? } pq

42 Try #3: Comparing Function Pointer as Argument typedef int (*eqTy) (void *, void *); int equals (void *p, void *q, tyEq eq) { return (eq (p, q)); } pq

43 Client Code int compareInt (void *p, void *q) { return *((int *)p)==*((int *)q); } //////////////////////////////////////// int *p = (int *)malloc (sizeof (*p)); *p = 9; int *q = (int *)malloc (sizeof (*q)); *q = 9; equals (p, q, compareInt);

44 Client Code int comparePoint2d (void *p, void *q) { return (p->x==q->x && p->y==q->y); } //////////////////////////////////////// struct s *x = (struct s *)malloc (sizeof (*x)); *x = …; struct s *y = (struct s *)malloc (sizeof (*y)); *y = …; equals (x, y, comparePoint2d); // A mimic of so-called “callback”.

45 Try #4: Function Pointers in Data int equals (void *p, void *q) { return (p->eq (p, q)); } pq eq

46 Point2d Revisited struct Point2d { int (*eq) (void *, void *); int x; int y; }; eq x y

47 Point2d Revisited struct Point2d *newPoint2d (int x, int y) { struct Point2d *p; p = (struct Point2d *)malloc (sizeof (*p)); p->x = x; p->y = y; p->eq = point2dEquals; return p; } eq x y p

48 Point2d Revisited int point2dEquals (void * pt1, void *pt2) { struct Point2d *p = (struct Point2d *)pt1; struct Point2d *q = (struct Point2d *)pt2; return ((p->x == q->x) && (p->y == q->y)); }

49 Try #4: Function Pointers in Data int equals (void *p, void *q) { return (p->eq (p, q)); } pq eq Commonly known as Object-oriented programming (OOP)

50 Problem #3: Efficiency // integer list #include “linkedList.h” … linkedList list = newLinkedList (); for (int i=0; i<10; i++) { insertHead (list, i); } // “integer” list #include “linkedList.h” … linkedList list = newLinkedList (); int *p; for (int i=0; i<10; i++) { p = (int *)malloc (4); *p = i; insertHead (list, p); }

51 Boxed Data Polymorphism does not come free data mostly heap-allocated, to cope with the “ void * ” pointer convention makes memory management expensive It ’ s programmers ’ duty to recycle garbage Such kind of data are called “ boxed ” and “ void * ” is essentially a mask difficulty of reallocation popularized the technology of garbage collection

52 Extension to other Languages Two flavors of polymorphism so far: ad-hoc void * They are important in that they motivate ideas for “ advanced ” features in other language Next, we ’ d discuss how C++ and Java reflect this observation and I ’ ll also use linked list as running example After that, you should be able to give some comment

53 Case Study Essentially, in C++ or Java, we could also use some form of “ void * ” C++ even supports that directly But we concentrate on: C++ Template Java Generic

54 Linked List Template #ifndef LINKED_LIST_H #define LINKED_LIST_H template class LinkedList { public: X data; LinkedList *next; void insertHead (X data); int exists (X data); }; // function on next slides… #endif

55 … and Functions // Note: these code is in same.h file as above! template void LinkedList ::insertHead (X data) { LinkedList *temp = new LinkedList (); temp->data = data; temp->next = this->next; this->next = temp; return; }

56 … and Functions // Note: these code is in same.h file as above! template int LinkedList ::exists (X data) { LinkedList *temp = this->next; while (temp) { if (temp->data == data) return 1; temp = temp->next; } return 0; }

57 Client Code #include “linkedList.h” int main () { LinkedList *p = …; LinkedList *q = …; for (int i=0; i<10; i++) p->insertHead (i); p->exists (5); q->exists (3.14); }

58 What ’ s a Template? template class LinkedList { public: X data; LinkedList *next; }; // which results in (roughly): class LinkedList_int { public: int data; LinkedList_int *next; }; class LinkedList_double { public: double data; LinkedList_double *next; };

59 Static Monomorphization Program code are duplicated Exponential in theory (code blowing) Seldom observed in practice Separate compilation is lost The template ’ s interface can not be compiled alone and the implementation is exposed

60 Template Rethink the ad-hoc poly in C Any difference? Rethink the problem of poly in C, does template also incur these problems? Why or why not? Security (inconsistency) Complexity Efficiency

61 Case Study C++ Template Java Generic

62 void * ≈ Object // In C void *p; p = (int *)malloc (sizeof(int)); *p = 99; … printf (“%d\n”, *p); equals (p, q, intEq); // In Java Object p; p = new Integer (99); … System.out.println (((Integer)p).intValue ()); p.equals (q);

63 Linked List in Java class LinkedList { Object data; LinkedList next; void insert (Object data) {…} Object getFirst () {…} }

64 Client Code LinkedList list = new LinkedList (); for (int i=0; i<10; i++) list.insert (new Integer (i)); // Also Ok for a list of strings: for (int i=0; i<10; i++) list.insert (new String (“hello”));

65 Problem #1: Inconsistency (Safety Issues) LinkedList list = new LinkedList (); for (int i=0; i<10; i++) list.insert (new Integer (i)); // compile-time error String s = list.getFirst ();

66 Problem #1: Inconsistency (Safety Issues) LinkedList list = new LinkedList (); for (int i=0; i<10; i++) list.insert (new Integer (i)); // shut up the compiler, but raise run-time // exception: String s = (String)list.getFirst ();

67 Cure to Problem #1: Generic class LinkedList { X data; LinkedList next; void insert (X data) {…} X getFirst () {…} }

68 Use of Generic LinkedList list = new LinkedList (); for (int i=0; i<10; i++) list.insert (new Integer (i)); // compile-time error list.insert (new String (“hello”));

69 Cure to Problem #1: Use of Generic LinkedList list = new LinkedList (); for (int i=0; i<10; i++) list.insert (new Integer (i)); // compile-time error list.insert (new String (“hello”)); // compile-time error String s = list.getFirst ();

70 Problem #2: Complexity // Turn back to “equals ()” function int equals (Object p, Object q); // How to implement this? pq

71 Cure to Problem #2: Dynamic Method Dispatch Every class has an “ equals ” method, the call to “ equals ” is automatically dispatched to the correct one in the current called object. (virtual functions) pq eq

72 Problem #3: Efficiency Nearly all data in Java are boxed objects typically heap-allocated Rely on garbage collection to recycle dead objects user have little control on this used in embedded system?


Download ppt "Polymorphism Discrete Mathematics and Its Applications Baojian Hua"

Similar presentations


Ads by Google