Download presentation
Presentation is loading. Please wait.
1
Dark Matter: A Mini Review Jin Min Yang 2008.7.23 Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing
2
Outline Evidence of Dark Matter Candidates of Dark Matter Experiments for Dark Matter SUSY Dark Matter Outlook
3
Galactic clusters: need DM to bind them (1930s, Zwicky) Galaxy rotation curves: need a diffuse halo of DM (1970s, Rubin &Ford) Gravity lensing: strong and weak lensing show DM in universe Hot gas in clusters: need DM to bind the hot gas CMB: CMB power spectrum show composition of universe (WMAP) Large scale structure formation: a universe composed of CDM and DE BBN: light elements abundances agree with observation if n B /n ~ 6 10 -10 (imply baryon mass density ~ 4 ) Supernovae probe: Hubble diagram indicate DM and DE in universe Colliding clusters: observation of colliding clusters from bullet cluster 1 、 Evidence of Dark Matter
4
0.3 GeV/cm 3 V 220 km/s
5
What we know about DM so far ? neutral cold (part of it can be warm) weak interaction (with itself and with ordinary matter) profile (around us 0.3GeV/cm 3 V 220 km/s) Identity of DM particle ? candidates
6
2 、 Candidates of Dark Matter Q-balls: topological solitons in QFT (Coleman, Kusenko) Neutrinos: sterile (Kusenko, 2006) Black hole remnants: tiny BHs produced in early universe Wimpzillas: massive beasts (Kolb et al) Axions: Peccei-Quinn solution to strong CP WIMPs: lightest neutralino in SUSY with R-parity lightest KK excitations in EDT with KK-parity lightest T-odd particle in LHT with T-parity SuperWIMPs: gravitino in SUSY with R-parity axino—fermionic partner of axion lightest KK graviton in EDT
7
Why WIMP is popular and favored ? (1) naturally predicted in new physics models (SUSY, Extra-dimension, LHT) lightest neutralino in SUSY with R-parity lightest KK excitations in extra-dimension lightest T-odd particle in LHT with T-parity (2) naturally give the correct relic density of DM
8
10 -34 秒 BBN 1 秒1 秒 10 13 秒 10 18 秒 Thermal equilibrium ff Universe cools: n=n EQ e -m/T Freeze out ~ 0.1 WIMP correct relic density of DM
9
Note: so far all DM information is from astro observation ! (gravity effects of DM) Nature (identity & property) of DM particle experiments
10
3 、 Experiments for Dark Matter 3.1 Astrophysical experiments indirect detection direct detection land-based high altitude space-based 3.2 Collider experiments (LHC, ILC) p e+e+ _
11
(a) direct detection 3.1 Astrophysical experiments
12
(b) indirect detection (anti-particle)
13
(c) indirect detection (photon) W. de Boer ARGO-YBJ
14
(d) indirect detection (neutrino)
15
3.2 Collider study of dark matter Tevatron (now) LHC (2008) ILC (???) model-dependent study model-independent study (possible) model-dependent study Birkel,Matchev,Perelstein, 2004
16
4. SUSY Dark Matter
17
LSP neutralino (WIMP) gravitino (SuperWIMP)
18
4.1 Neutralino (WIMP) Dark Matter (a) Allowed parameter space: Baer,Tata (2008)
19
(b) Astrophysical expts: Baer,Tata (2008)
20
(c) Collider expts (LHC, ILC): LHC Baltz et al (2006) Baer,Tata (2008)
21
(d) Collider + Astrophysical expts: Baer,Tata (2008) Baer, et al (2004)
22
(1) Interaction: Suppressed by E/M * (extremely weak !) 4.2 Gravitino (SuperWIMP) Dark Matter (gaugino & gauge boson) (fermions) (2) Relic density: Weinberg (1982) Cyburt, Ellis, Fields, Olive (2003) Kawasaki, Kohri, Moroi (2005) Feng, Rajaraman, Takayama, Su (2003) (thermal)(late-decay of NLSP)
23
(3) Astrophysical expts: Null results ! (due to extremely weak interaction) (4) Collider expts: Detect NLSP (meta-stable) NLSP (stau) SM particle LHC Hamaguchi, kuno, Nakaya, Nojiri (2004) Feng, Smith (2004)
24
WIMP Property Collider Experiments 5. Outlook
25
WMAP(current) Planck(~2010) LHC (“best case scenario”) ILC LCC1 Battaglia (2005)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.