Presentation is loading. Please wait.

Presentation is loading. Please wait.

By Baruch Barzel and Prof. Ofer Biham Efficient Simulations of Gas-Grain Chemistry Using Moment Equations.

Similar presentations


Presentation on theme: "By Baruch Barzel and Prof. Ofer Biham Efficient Simulations of Gas-Grain Chemistry Using Moment Equations."— Presentation transcript:

1 by Baruch Barzel and Prof. Ofer Biham Efficient Simulations of Gas-Grain Chemistry Using Moment Equations

2 2 Molecular Formation in the ISM

3 3 Horse-Head Nebula Molecular Formation in the ISM

4 4 H 2 Production in the gas phase: H + H → H 2 Gas-Phase Reactions Cannot Account for the Observed Production Rates Observed Production Rates in ISC: R H ~ 10-15 (mol cm -3 s -1 ) 2 The H 2 Puzzle

5 5 The Solution

6 6 kBTkBT -E0-E0 A H = (1/S) e = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt Incoming flux Desorption Recombination W H = e kBTkBT -E1-E1 The Production Rate of H 2 Molecules: R H = A H ‹ N H › 2 (mol s -1 ) 2 The Rate Equation

7 7 Mean-field approximation = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt When the Rate Equation Fails Neglects fluctuations Ignores discretization Not valid for small grains and low flux

8 8 P(0) P(1) P(N H -1) P(N H ) P(N H +1) P(N H +2) P(N max ) Flux term: F H [P H (N H -1) - P H (N H )] Desorption term: W H [(N H +1)P H (N H +1) - N H P H (N H )] Reaction term: A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] FHFH WHWH AHAH Probabilistic Approach

9 9 = F H [P H (N H -1) - P H (N H )] + W H [(N H +1)P H (N H +1) - N H P(N H )] + A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] dP H (N H ) dt ‹ N H › =  N H P H (N H ) N H = 0 S R H = A H ( ‹ N H 2 › - ‹ N H › ) 2 The Master Equation

10 10

11 11 OHO2O2 H2H2 O H H2OH2O The parameters: F i ; W i ; A i (i=1,2,3) 13 2 Complex Reactions

12 12 OHO2O2 H2H2 O H H2OH2O 13 2 The Master Disaster: P(N 1,N 2,N 3 ) Exponential Growth Complex Reactions

13 13 ‹ N H k › =  N H k P H (N H ) NH=0NH=0 8 After applying the summation: ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › The Moment Equations

14 14 We need more knowledge… Imposing a cutoff on P(N) The Daring Imposition: P(N>2) = 0 Truncating the Equations

15 15 ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › And after imposing the cutoff… Moment Equations for H 2 Production

16 16 ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H + 4A H ) ‹ N H › - (4A H + 2W H ) ‹ N H 2 › Moment Equations for H 2 Production

17 17 R H vs. Grain Size 2

18 18 ‹N1›,‹N1›, ‹N3›‹N3›‹N2›,‹N2›, OHO2O2 H2H2 O H H2OH2O ‹N1N2›‹N1N2› ‹N1N3›‹N1N3› ‹N22›‹N22› ‹N12›‹N12› 3 vertices + 2 edges + 2 loops = 7 equations A View to Complex Networks

19 19 Production Rates vs. Grain Size

20 20 15 vertices 30 edges + 3 loops 48 equations Multi-Specie Network

21 21 Summary The advantages of the moment equations: Reliable even for low coverage EfficientLinear Easy to incorporate into rate equation models Directly generate the required moments Further applications should be tested.


Download ppt "By Baruch Barzel and Prof. Ofer Biham Efficient Simulations of Gas-Grain Chemistry Using Moment Equations."

Similar presentations


Ads by Google