Download presentation
Presentation is loading. Please wait.
1
Lists Samuel Marateck © 2010
2
The Sieve of Eratosthenes
3
Place a 0 in all slots X = 26*[0]
4
Place 0’s in all slots. 0000000000000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
5
Start with 2 for j in range(2, √25):
6
Start with 2 for j in range(2, √25): if x[j] == 0:
7
Start with 2 for j in range(2, √25): if x[j] == 0: index = 2*j
8
Start with the 2 slot. 0000000000000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
9
for j in range(2, √25): if x[j] == 0: index = 2*j while index < 25: x[index] = 1
10
Place a 1 in the 4 slot. 0001000000000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
11
for j in range(2, √25): if x[j] == 0: index = 2*j while index < 25: x[index] = 1 index = index + j
12
Then in the 6 slot. 0001010000000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
13
Continue. 0001010100000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
14
0001010101000000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
15
0001010101010000000000000 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
16
Place 1’s in all multiples of 2 slots. 0001010101010101010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
17
Since there is a 0 in the 3 slot, 3 is prime 0001010101010101010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
18
There is a 1 already in the 6 slot. 0001010101010101010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
19
Place a 1 in the 9 slot. 0001010111010101010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
20
The 12 slot already has a 1. 0001010111010101010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
21
Then a 1 in the 15 slot. 0001010111010111010101010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
22
Then a 1 in the 21 slot. 0001010111010111010111010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
23
Now there is a 1 in all multiple of 3 slots. 0001010111010111010111010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
24
Skip the 4 slot since it has a 1. 0001010111010111010111010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
25
There is a 0 in the 5 slot, so 5 is prime. 0001010111010111010111010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
26
Place a 1 in multiple of 5 slots. 0001010111010111010111010 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
27
The only non-zero slot is 25. 0001010111010111010111011 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
28
Since √25 is 5 we stop here. 0001010111010111010111011 12345678910101 1212 1313 1414 1515 1616 1717 1818 1919 2020 21212 2323 2424 2525
29
Starting with 2, all the slots with 0’s are prime numbers. 0001010111010111010111011 23571 1313 1717 1919 2323
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.