Download presentation
1
Analysis of Trajectory Data
Week 3 Analysis of Trajectory Data Lecture 5: Fundamental quantities; total energy, temperature, pressure, volume, density. Structural quantities; root mean square deviation (RMSD), distribution functions (pair or radial), conformational analysis (Ramachandran plots, rotamers). Kinematic quantities; time correlation functions and transport coefficients. Complex structure determination via docking and MD. Lecture 6: Dynamical quantities; free energy of a system, Helmholtz and Gibbs free energies, calculation of free energy using perturbation, umbrella sampling, and steered MD methods.
2
Structural analysis of proteins and complexes
1. Fundamental quantities Total energy, temperature, pressure, volume (or density) 2. Structural quantities Root Mean Square Deviation (RMSD) Distribution functions (e.g., pair and radial) Conformational analysis (e.g., Ramachandran plots, rotamers) 3. Complex structure determination Determination of protein-ligand and protein-protein complexes using docking programs. Refinement of complex structures using MD simulations.
3
Fundamental quantities
Total energy: strictly conserved but due to numerical errors it may drift. Temperature: would be constant in a macroscopic system (fluctuations are proportional to 1/N, hence negligible). But in a small system, they will fluctuate around a base line. Temperature coupling ensures that the base line does not drift from the set temperature. Pressure: similar to temperature, though fluctuations are much larger compared to the set value of 1 atm. Volume (or density): fixed in the NVT ensemble but varies in NPT. Therefore, it needs to be monitored during the initial equilibration to make sure that the system has converged to the correct volume (density). Relatively quick for globular proteins in water but could take a long time (~1 ns) for systems involving lipids (membrane proteins).
4
Root Mean Square Deviation
For an N-atom system, variance and RMSD at time t are defined as Where ri(0) are the reference coordinates. Usually they are taken from the first frame in an MD simulation, though they can also be taken from the PDB or a target structure. Because side chains in proteins are different, it is common to use a restricted set of atoms such as Ca or the backbone (N, Ca, C,O) atoms. RMSD is very useful in monitoring the approach to equilibrium (typically, signalled by the appearance of a broad shoulder). It is a good practice to keep monitoring RMSD during production runs to ensure that the system stays near equilibrium.
5
Evolution of the RMSD for the backbone atoms of ubiquitin
6
Distribution functions
Pair distribution function gij(r) gives the probability of finding a pair of atoms (i, j) at a distance r. It is obtained by sampling the distance rij in MD simulations and placing each distance in an appropriate bin, [r, r+Dr]. Pair distribution functions are used in characterizing correlations between pair of atoms, e.g., hydrogen bonds, cation-carbonyl oxygen. The peak gives the average distance and the width, the strength of the interaction. When the distribution is isotropic (e.g., ion-water in an electrolyte), one samples all the atoms in the spherical shell, [r, r+Dr]. Thus to obtain the radial distribution function (RDF), the sampled number needs to be normalized by the volume ~4pr2Dr (as well as density)
7
Radial distribution functions exhibit oscillations, where each maxima is identified with a coordination number. They are obtained by integrating g(r) between two neighbouring minima, e.g. denoting the first minimum by rmin1, the first coordination number is given by Similarly, the second coordination number can be found from where rmin2 denotes the second minimum in the RDF.
8
RDF for a Lennard-Jones liquid
9
Example: Binding of charybdotoxin to KcsA potassium channel
Important charge int’s: K27 – Y78 (ABCD) R34 – D80 (D) R25 – D64, D80 (C) K11 – D64 (B) K11 R34 K27
10
Pair distribution functions for charge interactions
11
RMSD of charybdotoxin (ChTX)
12
Configurational changes in ChTx during umbrella sampling simul.
The N-terminal moves away and the helix is distorted (L16-V20 H-bond is broken) Changes are induced by the tidal forces arising from the competition between the applied harmonic forces pulling the toxin out and the Coulomb forces pulling it in. Such simulation artefacts has to be avoided using restraints.
13
Conformational analysis
In proteins, the bond lengths and bond angles are more or less fixed. Thus we are mainly interested in conformations of the torsional angles. As the shape of a protein is determined by the backbone atoms, the torsional angles, f (N−Ca) and y (C−Ca), are of particular interest. These are conveniently analyzed using the Ramachandran plots. Conformational changes in a protein during MD simulations can be most easily revealed by plotting these torsional angles as a function of time. Also of interest are the torsional angles of the side chains, c1, c2, etc. Each side chain has several energy minima (called rotamers), which are separated by low-energy barriers (~ kT). Thus transitions between different rotamers is readily achievable, and they could play functional roles, especially for charged side chains.
14
(Sasisekharan) a-helix ~ -57o ~ -47o
15
Bound atoms or groups of atoms fluctuate around a mean value.
Most of the high-frequency fluctuations (e.g. H atoms), do not directly contribute to the protein function. Nevertheless they serve as “lubricant” that enables large scale motions in proteins (e.g. domain motions) that do play a significant role in their function. As mentioned earlier, large scale motions occur in a ~ ms to s time scale, hence are beyond the present MD simulations. (Normal mode analysis provides an alternative.) But torsional fluctuations occur in the ns time domain, and can be studied in MD simulations using time correlation functions, e.g. These typically decay exponentially and such fluctuations can be described using the Langevin equation.
16
Time correlation functions & transport coefficients
At room temperature, all the atoms in the simulation system are in a constant motion characterized by their average kinetic energy: (3/2)kT. Free atoms or molecules diffuse according to the relationship While this relationship can be used to determine the diffusion coefficient, more robust results can be obtained using correlation functions, e.g., D is related to the velocity autocorrelation function as Similarly, conductance of charged particles is given by the Kubo formula (current)
17
Complex structure determination
Few proteins perform their function alone. In most cases, they form complexes with other proteins to become functional, or binding of a ligand to a protein triggers its function. Hemoglobin (oxygen carrying protein) is a complex of four proteins Ligand-gated ion channels are opened by binding of a ligand Most drugs act by binding to a receptor protein, moderating its function Structures of many biomolecules have been determined using x-ray diffraction or nuclear magnetic resonance (NMR). However, only in a handful of cases, structures of complexes have been determined experimentally. Accurate determination of complex structures is essential for understanding the function of proteins, and will have many applications in pharmacology (rational drug design) and biotechnology.
18
Basic methods for complex structure determination
1. Docking and scoring: The simplest and the fastest method. Typically an analytical function is used to estimate the interaction energy of the protein-ligand complex for various positions, orientations and conformations of the ligand, and its minimum value is used to find the binding pose of the ligand. Limited accuracy, especially in scoring. 2. Brownian dynamics (BD) simulations: Trajectory of the ligand is followed in BD simulations (implicit water) until it binds to the protein. Slower than docking and provides no apparent advantages. 3. MD simulations: Trajectory of the ligand is followed in MD simulations until it binds to the protein. Accurate but too slow to be useful in practice. 4. Docking combined with MD: Poses predicted by docking are refined in MD simulations. Currently the most optimal method for this purpose.
19
Docking methods AutoDock: The most popular docking method. Calculates the protein-ligand interaction energies over a grid. Scoring function: electrostatics + Lennard-Jones + hydrogen bond + solvation + entropic term. Protein is taken as rigid while ligand is allowed torsional flexibility. Works well for small molecules (e.g. not good for > 30 AA peptide) ZDOCK: Treats both protein and ligand as rigid, and hence can handle much larger ligands. Searches for the binding position by optimizing shape complementarity, electrostatics, and dehydration energies using a Fast Fourier Transform (FFT) algorithm on a grid. HADDOCK: Retains ligand flexibility and works for larger peptides. Much more sophisticated (e.g. uses of exp. restraints, allows ensemble docking, etc) but also much slower than the others.
20
Dynamical quantities – Free energy calculations
Free energy of a simulation system Free energy difference between two states Calculation of free energy differences using free energy perturbation (FEP) and thermodynamic integration (TI) methods; alchemical transformation between two states Path dependent methods; potential of mean force along a reaction coordinate; umbrella sampling with weighted histogram analysis method (WHAM); steered MD with Jarzysnki’s equation. Calculation of binding free energies using path independent and path dependent methods.
21
Free energy of a system Free energy is the most important quantity that characterizes a dynamical process. One can use either the Helmholtz or Gibbs free energy for this purpose, which are given by A = U – TS (Helmholtz) G = H – TS = U + pV – TS (Gibbs) In a typical biomolecular process, the volume and pressure do not change, hence it is appropriate to use the Helmholtz free energy A. Unfortunately, G has been used instead of A in the literature although the calculated quantity is the Helmholtz free energy. Calculation of the absolute free energies is difficult in MD simulations. However, free energy differences can be estimated more easily and several methods have been developed for this purpose.
22
Free energy perturbation (FEP)
The starting point for most approaches is Zwanzig’s perturbation formula for the free energy difference between two states A and B, which are described by the Hamiltonians HA and HB . Assuming that A and B differ by a small perturbation, the free energy difference is given by: The equality should hold if there is sufficient sampling. However, if the two states are not similar enough, this is difficult to achieve in finite simulations, and there will be a large hysteresis effect. (i.e. the forward and backward results will be very different)
23
Derivation of the perturbation formula
From statistical mechanics, the Helmholtz free energy is given by Free energy difference between two states A and B can be written as Inserting in the in top integral and using the probability (Z: partition function)
24
FEP with alchemical transformation
To obtain accurate results with the perturbation formula in finite time, the energy difference between the states should be a few kT, which is not satisfied for most biomolecular processes. To deal with this problem, one introduces a hybrid Hamiltonian and performs the transformation from A to B gradually by changing the parameter l from 0 to 1 in small steps. That is, one divides [0,1] into n subintervals with {li, i = 0, n}, and for each li value, calculates the free energy difference from the ensemble average
25
The total free energy change is then obtained by summing the contributions from each subinterval
The number of subintervals is chosen such that the free energy change at each step is < a few kT, otherwise the method may lose its validity. Points to be aware of: Most codes use equal subintervals for li. But the changes in DGi are usually highly non-linear. One should try to choose li such that DGi remains around a few kT for all values, e.g., for charge interactions, using exponential spacing gives better results. The simulation times (equilibration + production) have to be chosen carefully. It is not possible to extend them in case of non-convergence (have to start over).
26
Thermodynamic integration (TI)
Another way to obtain the free energy difference is to integrate the derivative of the hybrid Hamiltonian H(l): This integral is evaluated most efficiently using a Gaussian quadrature. In typical calculations for ions, 7-point quadrature is found to be sufficient. (But one should check that other quadratures give the same result) The advantage of TI over FEP is that the production run can be extended as long as necessary and the convergence of the free energy can be monitored (when the cumulative DG flattens, it has converged).
27
Example : Binding of a K+ ion to a protein
Initial state (A): K+ ion in bulk, a water molecule at the binding site. Final state (B): K+ ion at the binding site, water in place of the ion. The free energy difference between A and B gives free energy gain in translocating a K+ ion from bulk to the binding site of the protein. Note that this is not the binding free energy – that includes entropic changes as well. W K+ protein + K+ (bulk) protein + W (bulk) A B
28
Example: Free energy change due to mutation of a ligand
A very common question is how a mutation in a ligand (or protein) changes the free energy of the protein-ligand complex. DGA -DGbulk(AB) DGbs(AB) DGB Thermodynamic cycle + wild type + mutant
29
Standard binding free energy from FEP/TI methods
The total binding free energy of a ligand can be expressed as The various sigma’s are the translational and rotational rmsd’s of the ligand in the binding site. The last term is the interaction (or translocation) energy, which is calculated using FEP or TI.
30
Path dependent methods
Methods such as FEP and TI are independent of the physical path connecting the two states. As seen in the previous example, calculation of free energy difference for binding of a ligand involves annihilation of the ligand in bulk and its creation in the binding site. Such calculations can be done fairly accurately for small, uncharged ligands, but FEP/TI methods fail for large or charged ligands. The reason is that the hydration energies of such ligands are quite large and the errors committed in each (bulk and binding site) calculation is usually larger than the free energy difference between the two states. To calculate the binding free energy of such ligands, one has to use path dependent methods, where the ligand is physically moved from the binding site to bulk along a reaction coordinate, and its free energy profile along this path is calculated using various methods.
31
Potential of mean force (PMF)
Interaction of two molecules in solution is described by their PMF, W(r), whose gradient gives the average force acting between them. The PMF can be determined from MD simulations by sampling the relative positions of the two molecules. Assuming one is at the origin, the density of the second will be given by r(r). From Boltzmann equation, the density is given by Here is a reference point in bulk where W is assumed to vanish. Inverting the Boltzmann equation yields Thus by sampling the density along a reaction coordinate, one can determine the PMF between two molecules.
32
Umbrella sampling simulations
In general, position of a molecule cannot be adequately sampled at high-energy points in finite simulations. To counter that, one introduces harmonic potentials, which restrain the particle at desired points, and then unbias its effect (this can be done easily for a harmonic biasing potential). For convenience, one introduces umbrella potential at regular intervals along a reaction coordinate (e.g. ~0.5 Å). After adequate sampling of each window, the raw density data are unbiased, and the PMFs obtained from all the windows are optimally combined using the Weighted Histogram Analysis Method (WHAM). For a simple introduction to the WHAM method and how it is implemented in practice, see Alan Grossfield’s web page (search for “wham method” in google and download the pdf file).
33
Points to consider in umbrella sampling
Two main parameters in umbrella sampling are the force constant, k and the distance between windows, d. In bulk, the position of the ligand will have a Gaussian distribution given by The overlap between two Gaussian distributions separated by d The parameters should be chosen such that the percentage overlap satisfies, % > % overlap > 5% If the overlap is too small, PMF will have discontinuities. If it is too large, simulations are not very efficient.
34
Standard binding free energy from PMF
Experimentally, the standard binding free energy is determined by measuring the dissociation constant Kd (or IC50), which is defined as the ligand concentration at which half the ligands are bound. The standard binding free energy is related to the binding constant Keq = 1/Kd via Where C0 is the standard concentration of 1 M (i.e., 1/ C0 = 1660 Å3) The binding constant is determined by integrating the 3-D PMF over the binding site Because it virtually impossible to determine the PMF in a 3-D grid, it is necessary to invoke a 1-D approximation to the PMF.
35
1-D approximation of PMF
In most cases, there is a well-defined path from the binding site to bulk, along which the PMF is determined. Thus the simplest approximation is to perform the integral along this path assuming a flat-bottomed potential in the transverse directions which will make a constant contribution. Taking the path along the z-axis and assuming a cross sectional area of R2 for the flat-bottomed potential, we obtain The most sensible choice for R is to determine it from the transverse fluctuations of the COM of the ligand in the binding pocket. In fact, this choice can be rigorously justified using the simulation data without assuming a flat-bottomed potential.
36
Justification of the 1-D approximation of PMF
Distribution of the x and y components of the peptide COM follows a Gaussian distribution in all of the PMF windows (Kv1.3-HsTx1 complex)
37
Justification of the 1-D approximation of PMF
Gaussian distribution in x-y directions: Comparing with the Boltzmann distribution due to W(x,y) shows that the transverse PMF can be represented by a harmonic pot. Assuming W(x,y,z) = W(x,y) + W(z), the x-y integrals separate from z 1-D formula for Keq follows upon using
38
Justification of the 1-D approximation of PMF
For the validity of the 1-D approximation, the average transverse position of the ligand and its fluctuations should not deviate much from the binding site. B) The average transverse position of the ligand in each umbrella window. C) The R values (fluctuations) in each umbrella window.
39
Steered MD (SMD) simulations and Jarzynski’s equation
Steered MD is a more recent method where a harmonic force is applied to the COM of a peptide and the reference point of this force is pulled with a constant velocity v. It has been used to study binding of ligands and unfolding of proteins. The discovery of Jarzynski’s equation in 1997, enabled determination of PMF from SMD, which boosted its applications. Work done by the harmonic force Jarzynski’s equation: This method seems to work well in simple systems and when DG is large but beware of its applications in complex systems!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.