Download presentation
Presentation is loading. Please wait.
1
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk & Liseau, Serpens Core with VLT ANTU and ISAAC
2
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20042 L 4: Collapse phase – observational evidence Known Methods & Techniques What is the problem ? How to solve it ?
3
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20043 L 4: Collapse phase – observational evidence What is the problem ? Theories may give different answers what to look for – but predictions include
4
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20044 L 4: Collapse phase – observational evidence How to solve it ? or - how and where to look ? In dense interstellar clouds with infrared techniques !
5
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20045 Protostars are the Holy Grail of infrared astronomy Any observational difficulties ?
6
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20046 L 4: Collapse phase – observational evidence (Known) Methods & Techniques Radiation (1) Continuum (2) Spectral Lines
7
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20047 (1)Continuum (Proto-)stellar photospheres Free-free gas emission Thermal radiation from (radiatively) heated dust grains To infer the total mass one needs Gas-Dust Relation [ generally assumed: m(g)/m(d) = 100 ] Thermal radiation from (radiatively) heated dust grains
8
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20048 (1)Continuum Spectral Energy Distributions SEDs Observations and Theoretical Models Current Paradigm Adapted from van Zadelhoff 2002, PhD thesis Astronomical Taxonomy notice the spatial scales & time scales
9
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20049 (1)Continuum Spectral Energy Distributions (SEDs) SED fitting Observations Theoretical models Adams, Lada & Shu 1987ApJ 312, 788 + protostar
10
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200410 (1)Continuum Spatial Profile fitting Observations Theoretical models Butner et al. 1991 ApJ 376, 636 + KAO 50 m 100 m IRS 5 L1551 residuals I / I peak radial offset ( ´´ )
11
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200411 (1)Continuum Spatial Profile fitting Shirley et al. 2000 ApJS 131, 249 FIR & submm SCUBA 850 m 450 m Observations Azimuthal Intensity Distribution
12
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200412 Compare to theory of collapse (see L 3) Bonnor 1956 MNRAS 116, 351 centrally condensed flat distribution Shu 1977 extreme case
13
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200413 See also L 1: Motte et al. made fits at 1.3 mm => mostly Bonnor-Ebert spheres (flat) and Oph A with I(r) ~ r - 2 and furthermore obtained...
14
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200414 Clump Mass Spectrum & IMF 1 clump - 1 star no further Fragmentation ? - see Eduardo (L 3) Motte et al. 1998, AA 336, 150 Also Johnstone et al. 2000, ApJ 545, 327
15
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200415 (1)Continuum Spatial Profile fitting Firstly and only directly observed ~ r - 1.5 profile Keck-I, K band (Hodapp 1998, ApJ 500, L 183) B 335 FIRS
16
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200416 Harvey et al. 2003, ApJ 583, 809 Infall ? ``YES´´ Inside-out ? ``NO´´ IRAM-PdB Interferometer 1.2 mm 3 mm
17
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200417 (1)Continuum Major pitfalls/caveats: Geometry - spheres vs disks Calorimetric vs `true´ Luminosities Dust Optical Depths (Properties) Temperatures (Dust and Gas) Observations Theoretical models Inhouse work, see, e.g. : Larsson et al. 2000 White et al. 2000, AA
18
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200418 (2) Spectral Lines What lines – species ? (low-lying) Rotational Transitions in Molecules Physical Conditions of Excitation Cold ( T k ~ a few x 10 K ~ meV ) Large A V (no / little external radiation) and dense (n > 10 3 cm -3 ): collisional excitations dominate level populations ( if << 1 ) mostly neutrals but CosmicRays => molecular ions and e -
19
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200419 (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Why ? does not necessarily imply there’s `nothing´ there
20
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200420 (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Theoretical profiles: cf. L3 Foster & Chevalier 1993, ApJ 416, 303 Ammonia NH 3 (a?) (b?) Symmetrical Profiles no, spatial resolution
21
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200421 (2) Spectral Lines (a)Optically thin lines (b)Optically thick lines Theoretical profiles Leung & Brown 1977, ApJ 214, L73 Carbon monoxide CO = 12 C 16 O (a?) and Isotopes (b?) Asymmetrical Profiles cloud center offset...hmm..., needs to be verified
22
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200422 (2) Spectral Lines (b) Optically thick lines Theoretical profiles Zhou et al. 1993, ApJ 404, 232Shu Infall Asymmetrical Profiles for negative temperature gradient cooler: less intensity warmer: more intensity los
23
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200423 inside-out collapse (Shu 1977, ApJ 214, 488) (see: L 3) B 335 not from Shu model p = -1.5 p = -2 R inf = c s t inf = -0.5 = 0 adapted from Hartstein & Liseau 1998, AA 332, 703
24
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200424 (2) Spectral Lines (b) Optically thick lines Theoretical profiles Hartstein & Liseau 1998, AA 332, 703 Carbon Sulfide CS Observations + Asymmetrical Profiles high blue low red
25
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200425 (2) Spectral Lines (b) Optically thick lines Observed & Theoretical profiles Hartstein & Liseau 1998, AA 332, 703 Example: Carbon Monoxide 13 CO Carbon Sulfide CS (non-)equilibrium and information content thermalised C 18 O 13 CO
26
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200426 (2) Spectral Lines (b) Optically thick lines Carbon Sulfide CS Water Vapour H 2 O Observation: dependence of profiles on spatial resolution (``beam´´) oH 2 O (1-0) CS (2-1) 10´´ 20´´ 120´´ B 335 infall model 24´´ 38´´ 51´´
27
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200427 Wilner et al. 2000, ApJ 544, L69 Inside – out collapse: wings Observation: no wings B 335 Observed + Theoretical Profiles Single Dish Interferometer
28
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200428 (3) Continuum and Spectral Lines Theoretical profiles + Observations Inhouse, e.g.: Larsson et al. – Odin H 2 O + ground based Schöier et al. – ground based inc. chemistry Oph A IRAS 16293 ( Oph east )... but steady state models.... of a highly dynamic situation... e.g. Stark et al. 2004, ApJ 608, 341
29
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200429 Outflow contamination & confusion! `` finn fem fel ´´ Current Paradigm - ? Adapted from van Zadelhoff 2002, PhD thesis
30
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200430 FOV = 2.5 X 2.5 amin 2 (0.2 X 0.2 pc 2 ) Serp SMM 1 (S68 FIRS 1)* Infall Candidate Outflow Source Disk Source * D = 310 pc ISO SWS & LWS + submm/mm Fitting the observed SED*: M env = 6 M o L = 140 L o * 2-D radiative transfer (Larsson et al. 2002, AA 386, 1055)
31
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200431 Emission not from Disk Infalling Envelope but Outflow/Shocks Modeling the Line Emission
32
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200432 Outflow contamination & confusion! Single Stars? `` finn fem fel ´´ Current Paradigm - ? Adapted from van Zadelhoff 2002, PhD thesis
33
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200433 Number of Infall Candidates: Reasonable ? Expected ? * Object Classes and Lifetimes SFR of the solar neighbourhood Consistent picture? Magnus´ IMF talk * High mass starformation – cloud/cluster collapse
34
rene@astro.su.se L 4 - Stellar Evolution II: August-September, 200434 L 4: conclusions a variety of observational techniques are exploited a number of collapse candidates have been found all are strong outflow sources multiplicity is common L 4: open questions How many collapse processes do occur in nature ? more than one ? which ? What is the `certain´ collapse tracer ? What spectral & spatial resolution is needed ? Are stars/BDs/planets formed differently ? How ?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.