Download presentation
Presentation is loading. Please wait.
1
A synthetic camera model to test calibration procedures A four step procedure (last slide) based on an initial position (LookAt) and 13 parameters: ( x, y z ) – local Euler rotations (dt x dt y dt z ) – local displacement (f x f y s h 1 2 c x c y ) – camera internal parameters
2
ococ at c up c Camera initial extrinsic parameters: Initial extrinsic parameters: user input at c ococ up c xwxw ywyw zwzw The camera must start in a given position (not too far from the final solution!). The module must have an initialization procedure.
3
ococ Initial extrinsic parameters: first transformation xwxw ywyw zwzw Notation: origin system vector
4
Incremental rotation with Euler angles: x y z xx x y z yy x y z zz x y z where: c y = cos y, s x = sin x, etc.. for small ’s:
5
Incremental translation: dt x dt y dt z ococ t t0t0 xwxw ywyw zwzw dt
6
Transformation from global to local system xcxc ycyc zczc q y cd x cd next step: camera projection
7
Projection into pixels sxsx sysy pixel dimensions inclined projections where: xdxd ydyd projected point written in the coordinate system (x d,y d ) [in pixels] center of distortion axis in the middle of the image
8
Taking radial deformation into account xdxd ydyd Note that 1 and 2 are not the same as Tsai’s k 1 and k 2. The map shown here is in the inverse direction.
9
Changing the origin of the image x im y im xdxd ydyd xdxd ydyd
10
Putting all together: (x w, y w, z w ) T (x c, y c, z c ) T (x cd,y cd ) T (x d, y d ) T (x im,y im ) T Given and initial position given by L at and: ( x, y z dt x dt y dt z f x f y s h 1 2 c x c y ) we can compute x im and y im by: (step 1) (step 2) (step 3) (step 4)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.