Download presentation
Presentation is loading. Please wait.
1
1 Renal Structure and Function
2
2 Kidneys Paired Retroperitoneal Partially protected by the 11 th and 12 th ribs Right slightly lower due to liver Surrounded by renal capsule Adipose capsule Renal fascia
3
3
4
4
5
5 Anatomy Hilum (hilus) Renal artery and vein Cortex Medulla Renal pyramids and renal papillae Major and minor calyces Renal Pelvis Ureters
6
6
7
7 Ureters connect kidneys to urinary bladder Urethra leads from bladder outside the body
8
8
9
9 Kidneys make up 1 % of body mass, but receive about 25% of cardiac output. Kidney has two major functions: 1. Filtration of blood Removes metabolic wastes from the body, esp. those containing nitrogen
10
10 2. Regulation: Blood volume and composition Electrolytes Blood pH Blood pressure
11
11 Nephron Functional unit of the kidney Filtration, tubular reabsorption, tubular secretion Renal corpuscle: –Glomerulus – capillaries –Glomerular or Bowman’s capsule
12
12 Bowman’s capsule –Receives filtrate Proximal convoluted tubule –Reabsorption of water and solutes Nephron loop or Loop of Henle –Regulates concentration of urine Distal convoluted tubule and Collecting duct Reabsorption of water and electrolytes –ADH, aldosterone, ANP –Tubular secretion
13
13
14
14
15
15
16
16
17
17 Filtration Renal corpuscle Filtration membrane –Fenestrated endothelium of capillaries –Basement membrane of glomerulus –Slit membrane between pedicels of podocytes
18
18 Forces that influence filtration Glomerular blood hydrostatic pressure Opposing forces: –Plasma colloid osmotic pressure –Capsular hydrostatic pressure
19
19
20
20 Glomerular Filtration Rate Volume of plasma filtered / unit time Approx. 180 L /day Urine output is about 1- 2 L /day About 99% of filtrate is reabsorbed
21
21
22
22 GFR influenced by: Blood pressure and blood flow Obstruction to urine outflow Loss of protein-free fluid Hormonal regulation –Renin – angiotensin –Aldosterone –ADH –ANP
23
23 Juxtaglomerular apparatus Juxtaglomerular cells lie in the wall of afferent arteriole Macula densa in final portion of loop of Henle – monitor Na + and Cl - conc. and water Control blood flow into the glomerulus Control glomerular filtration
24
24
25
25
26
26 Tubular reabsorption Water, glucose, amino acids, urea, ions Sodium diffuses into cell; actively pumped out – drawing water with it
27
27
28
28
29
29 In addition to reabsorption, also have tubular secretion – substances move from peritubular capillaries into tubules – a second chance to remove substances from blood.
30
30
31
31 By end of proximal tubule have reabsorbed: 60- 70% of water and sodium about 100% of glucose and amino acids 90 % of K+, bicarb, Ca++, uric acid Transport maximum – maximum amount of a substance that can be absorbed per unit time Renal threshold – plasma conc. of a substance at which it exceeds Tm.
32
32 Loop of Henle Responsible for producing a concentrated urine by forming a concentration gradient within the medulla of kidney. When ADH is present, water is reabsorbed and urine is concentrated. Counter-current multiplier
33
33
34
34 Distal convoluted tubule and collecting ducts What happens here depends on ADH Aldosterone affects Na+ and K+ ADH – facultative water reabsorption Parathyroid hormone – increases Ca++ reabsorption
35
35
36
36 Distal convoluted tubule and collecting ducts Tubular secretion to rid body of substances: K+, H+, urea, ammonia, creatinine and certain drugs Secretion of H+ helps maintain blood pH (can also reabsorb bicarb and generate new bicarb)
37
37
38
38 Renal diagnostic procedures Urinalysis is non-invasive and inexpensive Normal properties are well known and easily measured
39
39 pH Normally 4.8 – 8.0 Higher in alkalosis, lower in acidosis Diabetes and starvation ↓ pH Urinary infections ↑ pH –Proteus and pseudomonas are urea splitters
40
40 Specific gravity Normal values 1.025 -1.032 High specific gravity can cause precipitation of solutes and formation of kidney stones When tubules are damaged, urine specific gravity approaches that of glomerular filtrate – 1.010 – remains fixed = 2/3 of nephron mass has been lost
41
41 Diabetes insipidus = 1.003 Diabetes mellitus = 1. 030 Emesis or fever = 1.040
42
42 Microscopic analysis Red blood cells – should be few or none –Hematuria – large numbers of rbc’s in urine –Catheterization –Menstruation –Inflamed prostate gland –Cystitis or bladder stones
43
43 Casts – precipitate from cells lining the renal tubules –Red cells – tubule bleeding –White cells – tubule inflammation –Epithelial cells – degeneration, necrosis of tubule cells
44
44 Crystals – –Infection –Inflammation –stones
45
45 White blood cells –Pyuria –Urinary tract infection Bacteria
46
46 Substances not normally present in urine Acetone Bile, bilirubin Glucose Protein – albumin –Renal disease involving glomerulus
47
47 Blood Urea Nitrogen BUN Urea produced by breakdown of amino acids - influenced by diet, dehydration, and hemolysis Normal range 10-20 mg/ dL If the GFR decreases due to renal disease or blockage, or decreased blood flow to kidney - BUN increases General screen for abnormal renal function
48
48 Creatinine clearance Creatinine is an end product of muscle metabolism Muscle mass is constant; creatinine is constant Normal 0.7 – 1.5 mg/ dL in plasma Can then be compared to creatinine in urine over 24 hour period to determine clearance
49
49 Creatinine clearance is an indirect measure of GFR and renal blood flow Creatinine is neither reabsorbed nor secreted, just freely filtered. Amount excreted = amount filtered Useful to monitor changes in chronic renal function Increases with trauma with massive muscle breakdown
50
50 Diagnostic testing Inulin clearance - not absorbed or secreted = GFR PAH – para-aminohippuric acid – not absorbed ; actively secreted = renal plasma flow
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.