Download presentation
Presentation is loading. Please wait.
1
Courtesy Costas Busch - RPI1 Non Deterministic Automata
2
Courtesy Costas Busch - RPI2 Alphabet = Nondeterministic Finite Accepter (NFA)
3
Courtesy Costas Busch - RPI3 Two choices Alphabet = Nondeterministic Finite Accepter (NFA)
4
Courtesy Costas Busch - RPI4 No transition Two choices No transition Alphabet = Nondeterministic Finite Accepter (NFA)
5
Courtesy Costas Busch - RPI5 First Choice
6
Courtesy Costas Busch - RPI6 First Choice
7
Courtesy Costas Busch - RPI7 First Choice
8
Courtesy Costas Busch - RPI8 “accept” First Choice All input is consumed
9
Courtesy Costas Busch - RPI9 Second Choice
10
Courtesy Costas Busch - RPI10 Second Choice
11
Courtesy Costas Busch - RPI11 Second Choice No transition: the automaton hangs
12
Courtesy Costas Busch - RPI12 Second Choice “reject” Input cannot be consumed
13
Courtesy Costas Busch - RPI13 An NFA accepts a string: when there is a computation of the NFA that accepts the string all the input is consumed and the automaton is in a final state AND
14
Courtesy Costas Busch - RPI14 Example is accepted by the NFA: “accept” “reject” because this computation accepts
15
Courtesy Costas Busch - RPI15 Rejection example
16
Courtesy Costas Busch - RPI16 First Choice
17
Courtesy Costas Busch - RPI17 First Choice “reject”
18
Courtesy Costas Busch - RPI18 Second Choice
19
Courtesy Costas Busch - RPI19 Second Choice
20
Courtesy Costas Busch - RPI20 Second Choice “reject”
21
Courtesy Costas Busch - RPI21 An NFA rejects a string: when there is no computation of the NFA that accepts the string: All the input is consumed and the automaton is in a non final state The input cannot be consumed OR
22
Courtesy Costas Busch - RPI22 Example is rejected by the NFA: “reject” All possible computations lead to rejection
23
Courtesy Costas Busch - RPI23 Rejection example
24
Courtesy Costas Busch - RPI24 First Choice
25
Courtesy Costas Busch - RPI25 First Choice No transition: the automaton hangs
26
Courtesy Costas Busch - RPI26 “reject” First Choice Input cannot be consumed
27
Courtesy Costas Busch - RPI27 Second Choice
28
Courtesy Costas Busch - RPI28 Second Choice
29
Courtesy Costas Busch - RPI29 Second Choice No transition: the automaton hangs
30
Courtesy Costas Busch - RPI30 Second Choice “reject” Input cannot be consumed
31
Courtesy Costas Busch - RPI31 is rejected by the NFA: “reject” All possible computations lead to rejection
32
Courtesy Costas Busch - RPI32 Language accepted:
33
Courtesy Costas Busch - RPI33 Lambda Transitions
34
Courtesy Costas Busch - RPI34
35
Courtesy Costas Busch - RPI35
36
Courtesy Costas Busch - RPI36 (read head does not move)
37
Courtesy Costas Busch - RPI37
38
Courtesy Costas Busch - RPI38 “accept” String is accepted all input is consumed
39
Courtesy Costas Busch - RPI39 Rejection Example
40
Courtesy Costas Busch - RPI40
41
Courtesy Costas Busch - RPI41 (read head doesn’t move)
42
Courtesy Costas Busch - RPI42 No transition: the automaton hangs
43
Courtesy Costas Busch - RPI43 “reject” String is rejected Input cannot be consumed
44
Courtesy Costas Busch - RPI44 Language accepted:
45
Courtesy Costas Busch - RPI45 Another NFA Example
46
Courtesy Costas Busch - RPI46
47
Courtesy Costas Busch - RPI47
48
Courtesy Costas Busch - RPI48
49
Courtesy Costas Busch - RPI49 “accept”
50
Courtesy Costas Busch - RPI50 Another String
51
Courtesy Costas Busch - RPI51
52
Courtesy Costas Busch - RPI52
53
Courtesy Costas Busch - RPI53
54
Courtesy Costas Busch - RPI54
55
Courtesy Costas Busch - RPI55
56
Courtesy Costas Busch - RPI56
57
Courtesy Costas Busch - RPI57 “accept”
58
Courtesy Costas Busch - RPI58 Language accepted
59
Courtesy Costas Busch - RPI59 Another NFA Example
60
Courtesy Costas Busch - RPI60 Language accepted (redundant state)
61
Courtesy Costas Busch - RPI61 Remarks: The symbol never appears on the input tape Simple automata:
62
Courtesy Costas Busch - RPI62 NFA DFA NFAs are interesting because we can express languages easier than DFAs
63
Courtesy Costas Busch - RPI63 Formal Definition of NFAs Set of states, i.e. Input aplhabet, i.e. Transition function Initial state Final states
64
Courtesy Costas Busch - RPI64 Transition Function
65
Courtesy Costas Busch - RPI65
66
Courtesy Costas Busch - RPI66
67
Courtesy Costas Busch - RPI67
68
Courtesy Costas Busch - RPI68 Extended Transition Function
69
Courtesy Costas Busch - RPI69
70
Courtesy Costas Busch - RPI70
71
Courtesy Costas Busch - RPI71 Formally : there is a walk from to with label
72
Courtesy Costas Busch - RPI72
73
73 Inductive Definition Basis: Induction: Suppose w = x a. Also Let Then
74
Courtesy Costas Busch - RPI74 The Language of an NFA
75
Courtesy Costas Busch - RPI75
76
Courtesy Costas Busch - RPI76
77
Courtesy Costas Busch - RPI77
78
Courtesy Costas Busch - RPI78
79
Courtesy Costas Busch - RPI79 Formally The language accepted by NFA is: where and there is some (final state)
80
Courtesy Costas Busch - RPI80
81
Courtesy Costas Busch - RPI81 NFAs accept the Regular Languages
82
Courtesy Costas Busch - RPI82 Equivalence of Machines Definition for Automata: Machine is equivalent to machine if
83
Courtesy Costas Busch - RPI83 Example of equivalent machines NFA DFA
84
Courtesy Costas Busch - RPI84 We will prove: Languages accepted by NFAs Regular Languages NFAs and DFAs have the same computation power Languages accepted by DFAs
85
Courtesy Costas Busch - RPI85 Languages accepted by NFAs Regular Languages Step 1 Proof: Every DFA is trivially an NFA Any language accepted by a DFA is also accepted by an NFA
86
Courtesy Costas Busch - RPI86 Languages accepted by NFAs Regular Languages Step 2 Proof: Any NFA can be converted to an equivalent DFA Any language accepted by an NFA is also accepted by a DFA
87
Courtesy Costas Busch - RPI87 Convert NFA to DFA NFA DFA
88
Courtesy Costas Busch - RPI88 Convert NFA to DFA NFA DFA
89
Courtesy Costas Busch - RPI89 Convert NFA to DFA NFA DFA
90
Courtesy Costas Busch - RPI90 Convert NFA to DFA NFA DFA
91
Courtesy Costas Busch - RPI91 Convert NFA to DFA NFA DFA
92
Courtesy Costas Busch - RPI92 Convert NFA to DFA NFA DFA
93
Courtesy Costas Busch - RPI93 Convert NFA to DFA NFA DFA
94
Courtesy Costas Busch - RPI94 NFA to DFA: Remarks We are given an NFA We want to convert it to an equivalent DFA With
95
Courtesy Costas Busch - RPI95 If the NFA has n states the DFA has 2 n states in the power set of Q N i.e.
96
Courtesy Costas Busch - RPI96 Procedure NFA to DFA 1. Initial state of NFA: Initial state of DFA:
97
Courtesy Costas Busch - RPI97 Example NFA DFA
98
Courtesy Costas Busch - RPI98 Procedure NFA to DFA 2. For every DFA’s state Compute in the NFA Add transition to DFA
99
Courtesy Costas Busch - RPI99 Exampe NFA DFA
100
Courtesy Costas Busch - RPI100 Procedure NFA to DFA Repeat Step 2 for all letters in alphabet, until no more transitions can be added.
101
Courtesy Costas Busch - RPI101 Example NFA DFA
102
Courtesy Costas Busch - RPI102 Procedure NFA to DFA 3. For any DFA state If some is a final state in the NFA Then, is a final state in the DFA
103
Courtesy Costas Busch - RPI103 Example NFA DFA
104
Courtesy Costas Busch - RPI104 Theorem Take NFA Apply procedure to obtain DFA Then and are equivalent :
105
Courtesy Costas Busch - RPI105 Proof AND
106
Courtesy Costas Busch - RPI106 First we show: Take arbitrary: We will prove:
107
Courtesy Costas Busch - RPI107
108
Courtesy Costas Busch - RPI108 We will show that if
109
Courtesy Costas Busch - RPI109 More generally, we will show that if in : (arbitrary string)
110
Courtesy Costas Busch - RPI110 Proof by induction on Induction Basis:
111
Courtesy Costas Busch - RPI111 Induction hypothesis:
112
Courtesy Costas Busch - RPI112 Induction Step:
113
Courtesy Costas Busch - RPI113 Induction Step:
114
Courtesy Costas Busch - RPI114 Therefore if
115
Courtesy Costas Busch - RPI115 We have shown: We also need to show: (proof is similar)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.