Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.

Similar presentations


Presentation on theme: "Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh."— Presentation transcript:

1 Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

2 D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)

3 Trap for ultracold 87 Rb atoms

4

5 M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Superfliud

6 M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Insulator

7 Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry

8 Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry

9 Boson Hubbard model M.PA. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher Phys. Rev. B 40, 546 (1989).

10 The insulator:

11 Excitations of the insulator:

12

13

14

15 Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry

16 K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

17

18 Does this matter ?

19

20 Conformal mapping of plane to cylinder with circumference 1/T

21

22 Does this matter ?

23 No diffusion of charge, and no hydrodynamics

24 Does this matter ?

25 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

26

27 K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions

28

29

30 Superfluid Insulator

31 Superfluid Insulator CFT at T > 0

32 Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry

33 Excitations of the insulator:

34 Approaching the transition from the superfluid Excitations of the superfluid: (A) Spin waves

35 Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices vortex

36 Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices vortex E

37 Approaching the transition from the superfluid Excitations of the superfluid: Spin wave and vortices

38 C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

39

40 C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036

41 Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry

42

43

44

45

46 ImC tt /k 2 CFT at T=0

47

48 diffusion peak ImC tt /k 2

49

50

51 The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036

52 The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036

53 The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036 Holographic self-duality

54 Open questions 1.Does K L K T = constant (i.e. holographic self-duality) hold for SYM 3 SCFT at finite N ? 2.Is there any CFT 3 with an Abelian U(1) current whose conductivity can be determined by self-duality ? (unlikely, because global and topological U(1) currents are interchanged under duality). 3.Is there any CFT 3 solvable by AdS/CFT which is not (holographically) self-dual ? 4.Is there an AdS 4 description of the hydrodynamics of the O(N) Wilson-Fisher CFT 3 ? (can use 1/N expansion to control strongly-coupled gravity theory).


Download ppt "Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh."

Similar presentations


Ads by Google