Download presentation
Presentation is loading. Please wait.
1
Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu
2
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)
3
Trap for ultracold 87 Rb atoms
5
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Superfliud
6
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Insulator
7
Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry
8
Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry
9
Boson Hubbard model M.PA. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher Phys. Rev. B 40, 546 (1989).
10
The insulator:
11
Excitations of the insulator:
15
Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry
16
K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
18
Does this matter ?
20
Conformal mapping of plane to cylinder with circumference 1/T
22
Does this matter ?
23
No diffusion of charge, and no hydrodynamics
24
Does this matter ?
25
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
27
K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions
30
Superfluid Insulator
31
Superfluid Insulator CFT at T > 0
32
Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry
33
Excitations of the insulator:
34
Approaching the transition from the superfluid Excitations of the superfluid: (A) Spin waves
35
Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices vortex
36
Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices vortex E
37
Approaching the transition from the superfluid Excitations of the superfluid: Spin wave and vortices
38
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)
40
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
41
Outline 1.Boson Hubbard model – conformal field theory (CFT) 2.Hydrodynamics of CFTs 3.Duality 4.SYM 3 with N=8 supersymmetry
46
ImC tt /k 2 CFT at T=0
48
diffusion peak ImC tt /k 2
51
The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
52
The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
53
The self-duality of the 4D SO(8) gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036 Holographic self-duality
54
Open questions 1.Does K L K T = constant (i.e. holographic self-duality) hold for SYM 3 SCFT at finite N ? 2.Is there any CFT 3 with an Abelian U(1) current whose conductivity can be determined by self-duality ? (unlikely, because global and topological U(1) currents are interchanged under duality). 3.Is there any CFT 3 solvable by AdS/CFT which is not (holographically) self-dual ? 4.Is there an AdS 4 description of the hydrodynamics of the O(N) Wilson-Fisher CFT 3 ? (can use 1/N expansion to control strongly-coupled gravity theory).
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.