Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stanford CS223B Computer Vision, Winter 2005 Lecture 5: Stereo I Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford.

Similar presentations


Presentation on theme: "Stanford CS223B Computer Vision, Winter 2005 Lecture 5: Stereo I Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford."— Presentation transcript:

1 Stanford CS223B Computer Vision, Winter 2005 Lecture 5: Stereo I Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford Stereo

2 Sebastian Thrun Stanford University CS223B Computer Vision Stereo Vision: Illustration http://www.well.com/user/jimg/stereo/stereo_list.html

3 Sebastian Thrun Stanford University CS223B Computer Vision Stereo Vision: Outline Basic Equations Epipolar Geometry Image Rectification Reconstruction Correspondence Dense and Layered Stereo (Active Range Imaging Techniques)

4 Sebastian Thrun Stanford University CS223B Computer Vision Pinhole Camera Model Image plane Focal length f Center of projection

5 Sebastian Thrun Stanford University CS223B Computer Vision Pinhole Camera Model Image plane

6 Sebastian Thrun Stanford University CS223B Computer Vision Pinhole Camera Model Image plane

7 Sebastian Thrun Stanford University CS223B Computer Vision Basic Stereo Derivations

8 Sebastian Thrun Stanford University CS223B Computer Vision Basic Stereo Derivations

9 Sebastian Thrun Stanford University CS223B Computer Vision What If…?

10 Sebastian Thrun Stanford University CS223B Computer Vision Epipolar Geometry p l p r P OlOl OrOr XlXl XrXr PlPl PrPr flfl frfr ZlZl YlYl ZrZr YrYr

11 Sebastian Thrun Stanford University CS223B Computer Vision Epipolar Geometry p l p r P OlOl OrOr elel erer PlPl PrPr Epipolar Plane Epipolar Lines Epipoles

12 Sebastian Thrun Stanford University CS223B Computer Vision Epipolar Geometry Epipolar plane: plane going through point P and the centers of projection (COPs) of the two cameras Epipoles: The image in one camera of the COP of the other Epipolar Constraint: Corresponding points must lie on epipolar lines

13 Sebastian Thrun Stanford University CS223B Computer Vision Essential Matrix p l p r P OlOl OrOr elel erer PlPl PrPr Orthogonality T, P l, P l  T : Coordinate Transformation: Resolves to Essential Matrix

14 Sebastian Thrun Stanford University CS223B Computer Vision Essential Matrix p l p r P OlOl OrOr elel erer PlPl PrPr Projective Line:

15 Sebastian Thrun Stanford University CS223B Computer Vision Fundamental Matrix Same as Essential Matrix in Camera Pixel Coordinates Pixel coordinates Intrinsic parameters

16 Sebastian Thrun Stanford University CS223B Computer Vision Computing F: The Eight-Point Algorithm Input: n point correspondences ( n >= 8) –Construct homogeneous system Ax= 0 from x = (f 11,f 12,,f 13, f 21,f 22,f 23 f 31,f 32, f 33 ) : entries in F Each correspondence give one equation A is a nx9 matrix –Obtain estimate F^ by SVD of A: x (up to a scale) is column of V corresponding to the least singular value –Enforce singularity constraint: since Rank (F) = 2 Compute SVD of F: Set the smallest singular value to 0: D -> D’ Correct estimate of F : Output: the estimate of the fundamental matrix F’ Similarly we can compute E given intrinsic parameters

17 Sebastian Thrun Stanford University CS223B Computer Vision Recitification Idea: Align Epipolar Lines with Scan Lines. Question: What type transformation?

18 Sebastian Thrun Stanford University CS223B Computer Vision Locating the Epipoles p l p r P OlOl OrOr elel erer PlPl PrPr Input: Fundamental Matrix F –Find the SVD of F –The epipole e l is the column of V corresponding to the null singular value (as shown above) –The epipole e r is the column of U corresponding to the null singular value (similar treatment as for e l ) Output: Epipole e l and e r e l lies on all the epipolar lines of the left image

19 Sebastian Thrun Stanford University CS223B Computer Vision Stereo Rectification (see Trucco) Stereo System with Parallel Optical Axes n Epipoles are at infinity n Horizontal epipolar lines p l p r P OlOl OrOr XlXl XrXr PlPl PrPr ZlZl YlYl ZrZr YrYr T

20 Sebastian Thrun Stanford University CS223B Computer Vision p l p r P OlOl OrOr PlPl PrPr Reconstruction (3-D): Idealized

21 Sebastian Thrun Stanford University CS223B Computer Vision p l p r P OlOl OrOr PlPl PrPr Reconstruction (3-D): Real See Trucco/Verri, pages 161-171

22 Sebastian Thrun Stanford University CS223B Computer Vision Summary Stereo Vision (Class 1) Epipolar Geometry: Corresponding points lie on epipolar line Essential/Fundamental matrix: Defines this line Eight-Point Algorithm: Recovers Fundamental matrix Rectification: Epipolar lines parallel to scanlines Reconstruction: Minimize quadratic distance


Download ppt "Stanford CS223B Computer Vision, Winter 2005 Lecture 5: Stereo I Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford."

Similar presentations


Ads by Google