Download presentation
Presentation is loading. Please wait.
1
Autonomous Robot Navigation Panos Trahanias e-mail: trahania@csd.uoc.gr ΗΥ475 Fall 2007
2
Panos Trahanias: Autonomous Robot Navigation Mobile Robots - Examples The Mars rover Sojourner The museum tour-guide Minerva The RHex Hexapod The museum tour-guide Lefkos
3
Panos Trahanias: Autonomous Robot Navigation Typical Mobile Robot Setup Interaction Processing Power Motors Sensors Stereo vision Sonars Bump sensors Infrared sensors Laser scanner Bump sensors Sonars Odometry Communications
4
Panos Trahanias: Autonomous Robot Navigation Scope of the Course Mobile Robots – How to move and achieve motion target goals in (indoor) environments Hence Localization (where am I?) Mapping, simultaneous localization and mapping – SLAM (what is my workspace?) Path planning (how to get there?) Obstacle avoidance (… get there safely…)
5
Panos Trahanias: Autonomous Robot Navigation Given An environment representation - Map C G Knowledge of current position C A path has to be planned and tracked that will take the robot from C to G Target position G Autonomous Navigation- Research Directions
6
Panos Trahanias: Autonomous Robot Navigation During execution (run- time) Objects / Obstacles O may block the robot C G The planned path is no- longer valid The obstacle needs to be avoided and the path may need to be re- planned O X Autonomous Navigation- Research Directions
7
Panos Trahanias: Autonomous Robot Navigation Navigation Issues Important questions (Levitt et al ’91) Important navigation issues Where am I Where are other places relative to me Where are other places relative to me How do I get to other places from here How do I get to other places from here Robot localization Map building Path/motion planning
8
Panos Trahanias: Autonomous Robot Navigation Navigation Issues – Underlying HW Interaction Processing Power Motors Sensors Stereo vision Sonars Bump sensors Infrared sensors Laser scanner Bump sensors Sonars Odometry Communications Laser Scanner
9
Panos Trahanias: Autonomous Robot Navigation Range Sensor Model Laser Rangefinder Model range and angle errors.
10
Panos Trahanias: Autonomous Robot Navigation Need for Modeling Extremely Complex Dynamical System Need for Appropriate Modeling Robot Environment+
11
Panos Trahanias: Autonomous Robot Navigation Markov Assumption State depends only on previous state and observations Static world assumption Hidden Markov Model (HMM) Bayesian estimation: Attempt to construct the posterior distribution of the state given all measurements
12
Panos Trahanias: Autonomous Robot Navigation A Dynamic System Most commonly - Available: Initial State Observations System (motion) Model Measurement (observation) Model
13
Panos Trahanias: Autonomous Robot Navigation Inference - Learning Localization (inference task) Compute the probability that the robot is at pose z at time t given all observations up to time t (forward recursions only) Map building (learning task) Determine the map m that maximizes the probability of the observation sequence.
14
Panos Trahanias: Autonomous Robot Navigation Belief State Discrete representation –Grid (Dynamic)(Dynamic) Markov localization (Burgard98) –SamplesMonte Carlo localization (Fox99) Continuous representation –Gaussian distributionsKalman filters (Kalman60) How is the prior distribution represented? How is the posterior distribution calculated?
15
Panos Trahanias: Autonomous Robot Navigation Example: State Representations for Robot Localization Grid Based approaches (Markov localization) Particle Filters (Monte Carlo localization) Kalman Tracking Discrete RepresentationsContinuous Representations
16
Panos Trahanias: Autonomous Robot Navigation LOCALIZATION
17
Panos Trahanias: Autonomous Robot Navigation Markov Assumption Localization: determine the likelihood of robot’s state Given a sequence of observations Determine the probability
18
Panos Trahanias: Autonomous Robot Navigation Markov Assumption In practice: too difficult to determine the joint effect of all observations up to time K. Common assumption: hidden states obey the Markov assumption (static world assumption), so as we can factor as
19
Panos Trahanias: Autonomous Robot Navigation Markov Assumption
20
Panos Trahanias: Autonomous Robot Navigation Markov Assumption All information about past history is represented in Different approaches in this representation lead to different treatments of the problem. Integrate over all possible states
21
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Probabilistic estimation Simultaneously maintain estimates for both the state x and error covariance matrix P Equivalent to say: output of a Kalman filter is a Gaussian PDF (other methods can handle more general distributions)
22
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Crude localization method: integrate robot velocity commands Problem: info continuously lost, no new info added. Solution: add info from exterioreceptive sensors.
23
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Sensor measurements add new info – PDF in sensor space. Localization knowledge (prior to sensor measurement) is a PDF in state space. Probabilistic Estimation: merge the 2 PDFs Two step process: prediction update
24
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Simple observer update
25
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Prediction Update
26
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Observing with probability distributions
27
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering Prediction Update where
28
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering
29
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering
30
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering
31
Panos Trahanias: Autonomous Robot Navigation Kalman Filtering
32
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods
33
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Discrete Approximations
34
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Discrete Approximations
35
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Discrete Approximations Results
36
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Discrete Approximations Results
37
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters
38
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters/Resampling
39
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters Motion Model
40
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters State Belief
41
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters Global Localization
42
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Particle Filters Global Localization - Results
43
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Sensor Models Typical Sonar Scan
44
Panos Trahanias: Autonomous Robot Navigation Bayesian Methods – Sensor Models Histograms
45
Panos Trahanias: Autonomous Robot Navigation PATH PLANNING
46
Panos Trahanias: Autonomous Robot Navigation Bug Algorithms Bug1
47
Panos Trahanias: Autonomous Robot Navigation Bug Algorithms Bug1
48
Panos Trahanias: Autonomous Robot Navigation Bug Algorithms Bug2
49
Panos Trahanias: Autonomous Robot Navigation Bug Algorithms Bug2
50
Panos Trahanias: Autonomous Robot Navigation Bug Algorithms Bug2
51
Panos Trahanias: Autonomous Robot Navigation POTENTIAL FUNCTIONS
52
Panos Trahanias: Autonomous Robot Navigation Potential Field Attractive – Repulsive Forces
53
Panos Trahanias: Autonomous Robot Navigation Potential Field Potential Function
54
Panos Trahanias: Autonomous Robot Navigation Potential Field Attractive Potential
55
Panos Trahanias: Autonomous Robot Navigation Potential Field Repulsive Potential
56
Panos Trahanias: Autonomous Robot Navigation Potential Field BrushFire Algorithm
57
Panos Trahanias: Autonomous Robot Navigation Potential Field Local Minima Problem
58
Panos Trahanias: Autonomous Robot Navigation Potential Field Wavefront Planner
59
Panos Trahanias: Autonomous Robot Navigation Navigation Functions
60
Panos Trahanias: Autonomous Robot Navigation Navigation Functions
61
Panos Trahanias: Autonomous Robot Navigation Value Iteration Value Iteration Algorithm Dynamic programming (fast) Creates potential field (run only once per target) Initialization rule Update rule
62
Panos Trahanias: Autonomous Robot Navigation Value Iteration - Results
63
Panos Trahanias: Autonomous Robot Navigation OBSTACLE AVOIDANCE
64
Panos Trahanias: Autonomous Robot Navigation Certainty Grid Representation
65
Panos Trahanias: Autonomous Robot Navigation VFF – Virtual Force Field
66
Panos Trahanias: Autonomous Robot Navigation VFF – Virtual Force Field
67
Panos Trahanias: Autonomous Robot Navigation Polar Histogram
68
Panos Trahanias: Autonomous Robot Navigation Polar Histogram
69
Panos Trahanias: Autonomous Robot Navigation Motion Candidate Directions
70
Panos Trahanias: Autonomous Robot Navigation Traveling Alongside an Obstacle
71
Panos Trahanias: Autonomous Robot Navigation Steering Reference
72
Panos Trahanias: Autonomous Robot Navigation VFH – Example Course
73
Panos Trahanias: Autonomous Robot Navigation CONFIGURATION SPACE
74
Panos Trahanias: Autonomous Robot Navigation Two-link Manipulator - Workspace
75
Panos Trahanias: Autonomous Robot Navigation Two-link Manipulator – Configuration Space
76
Panos Trahanias: Autonomous Robot Navigation Obstacles – Configuration Space
77
Panos Trahanias: Autonomous Robot Navigation Obstacles – Configuration Space
78
Panos Trahanias: Autonomous Robot Navigation Obstacles – Configuration Space
79
Panos Trahanias: Autonomous Robot Navigation Obstacles – Configuration Space
80
Panos Trahanias: Autonomous Robot Navigation Workspace – Configuration Space
81
Panos Trahanias: Autonomous Robot Navigation Workspace – Configuration Space
82
Panos Trahanias: Autonomous Robot Navigation Workspace – Configuration Space
83
Panos Trahanias: Autonomous Robot Navigation Planar Parallel Mechanism
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.