Download presentation
Presentation is loading. Please wait.
1
Local and regional species richness y = 0.54x - 1.2 R 2 = 0.56 0 5 10 15 20 0102030 Species of regional pool Species of local pool Species richness on bracken is higher at richer sites At species poorer sites there seem to be many empty niches Local habitats are not saturated with species Bracken occurs whole over the world Species numbers of phytophages on bracken differ Is this difference an effect of competitive exlusion or do empty niches exist? John H.Lawton The common brushtail Possum Trichosurus vulpecula is at its introduced sites often free of natural parasites. There are empty niches
2
Cynipid gall wasps in Norh America (Cornell 1985) Lacutrine fish in North America (Gaston 2000) Relationship between local species richness and the regional species pool size for 14 vegetation types in Estonia (Pärtel et al. 1996) Dry grasslandsMoist grasslands y = 0.49x + 0.51 R 2 = 0.73 0 5 10 15 20 25 010203040 Number of species regionally Number of species locally y = 0.36x + 0.41 R 2 = 0.83 0 0.5 1 1.5 2 2.5 3 3.5 4 0246810 Regional number of species Local number of species y = 0.27x - 6.9 R2 = 0.93 0 20 40 60 80 100 120 0100200300400 Number of species regionally Number of species locally y = 16Ln(x) - 49 R2 = 0.86 0 20 40 60 80 100 120 0100200300400 Number of species regionally Number of species locally Local and regional species richness
3
Four possible relations between local and regional species numbers 0 5 10 15 20 25 30 35 40 010203040 Regional number of species Local number of species
4
Abundance – range size relationships Freshwater gyrinid beetles in temporary pools (Svensson 1992)Regional distribution of 21 Bombus species in northern Spain (Obeso 1992) Local abundance in relation to regional distribution of soil mites (Karppinen 1958) D: Local abundance in relation to regional distribution of bumblebees in Poland (Anasiewicz 1971) Diptera colonising dead snails in a beech forest (Ulrich 2001) Parasitic Hymenoptera of these Diptera (Ulrich 2001) y = 0.95e 2.58x R 2 = 0.83 0 2 4 6 8 00.20.40.60.8 Fraction of pools occupied Mean abundance y = 0.067e 6.97x R 2 = 0.5472 0% 5% 10% 15% 20% 25% 30% 00.050.10.150.2 Fraction of sites occupied Percentage of total Abundance y = 3.06e 0.11x R 2 = 0.90 0 200 400 600 800 1000 01020304050 Number of sites occupied log rel. abundance y = 1.0e 0.33x R 2 = 0.82 0 20 40 60 80 0246810 Number of sites occupied log rel. abundance y = 1.35e 3.674x R 2 = 0.59 0 20 40 60 80 0%20%40%60%80%100% Percentage of site occupied Mean density per occupied patch y = 1.57e 2.97x R 2 = 0.78 0 2 4 6 8 10 0%20%40%60% Percentage of site occupied Mean density per occupied patch
5
Patch occupancy models 204 3 2 1 8 5 12 171 3 1 4 5 4 4 4 A matrix of cells refers to a metacommunity scale Each cell represents one local community Cells might have different sizes Individuals of different species of the meta- community are now placed at random or according to certain predefined rules into the cells A random placement is called a passive sampling model The spatial distribution patterns are then compared to observed ones. Individuals of 100 species were placed at random into a 100x100 matrix. Species had different individual numbers Matrix cells had different capacities The model produces an abundance - range size relationship This relationship follows an exponential model as observed in reality Abundance - range size relationships are most parsimonous explained from passive sampling in heterogeneous environments
6
Core and satellite species Insects on small mangrove islands (Simberloff 1976) Plant species in Russian Karelia (Linkola 1916) In an assemblage of species distributed over many sites we can often differentiate a group of core species, which occur in most or even all of the sites, and a group of satellite species, which occur only in a few or even only in one site. 0 20 40 60 80 100 123456789 Number of sites occupied Number of species 0 20 40 60 80 0123456789101112 Number of sites occupied Number of species
7
Core and satellite species Ground beetles species on Mazuran lake island Satellite (infrequent, tourist) species Core (frequent, permanent) species Random pattern of temporal or spatial occurrence High dispersal ability Log-series rank abundance distributions Weak species interactions Forming random assemblages Non-random pattern of temporal or spatial occurrence Lower dispersal ability Log-normal rank abundance distributions Importance of species interactions Forming true ecological communities Importance of ecological interactions
8
Nestedness Speciesgilfullipsoskorguc3pogheldabwronmilwil2pogterwrosswi1pog Occurren- ces Carabus granulatus 1101211359154255211 1807711 191015 Pterostichus melanarius 34518770442811996013169172639429364013015 Pterostichus strennus (Panzer) 30132414285364732275054015 Oxypselaphus obscurus (Herbst) 166277278968027096854825013370114 Pterostichus diligens (Sturm) 1811541101125041103013 Synuchus vivalis (Illiger) 2419514121051020120014012 Patrobus atrorufus (Stroem) 348113735119220812006072012 Carabus nemoralis Muller 81451210611652000060011 Pterostichus antracinus 2102021011002744611001110 Pterostichus minor (Gyllenhal) 4800210710025280210510 Notiophilus palustris (Duftshmid) 127140220100000008 Stomis pumicatus (Panzer) 11250140125000000008 Clivina fossor (Linnaeus) 200000302111100007 Epaphius secalis (Paykull) 151278804003000040007 Leistus rufomarginatus (Duftshmid) 77103400230000000006 Notiophilus biguttatus (Fabricius) 122001010000000005 Calathus melanocephalus (Linnaeus) 010010000021000004 Carabus hortensis Linnaeus 5275000109000000000003 Calathus mollis (Marsham) 090000000010000002 Calathus micropterus (Duftschmid) 0201000000000000002 Dischirius globosus (Herbst) 000000000040000001 Leistus ferrugineus (Linnaeus) 100000000000000001 Calathus fuscipes (Goeze) 000060000000000001 Carabus cancelatus Illiger 001000000000000001 Occurrences18171613 1211 10 98766324 Ground beetles species with limited dispersal ability on Mazuran lake island Core and satellite species
9
Speciesgilfullipsoskorguc3pogheldabwronmilwil2pogterwrosswi1pog Occurren- ces Carabus granulatus 1101211359154255211 1807711 191015 Pterostichus melanarius 34518770442811996013169172639429364013015 Pterostichus strennus (Panzer) 30132414285364732275054015 Oxypselaphus obscurus (Herbst) 166277278968027096854825013370114 Pterostichus diligens (Sturm) 1811541101125041103013 Synuchus vivalis (Illiger) 2419514121051020120014012 Patrobus atrorufus (Stroem) 348113735119220812006072012 Carabus nemoralis Muller 81451210611652000060011 Pterostichus antracinus 2102021011002744611001110 Pterostichus minor (Gyllenhal) 4800210710025280210510 Notiophilus palustris (Duftshmid) 127140220100000008 Stomis pumicatus (Panzer) 11250140125000000008 Clivina fossor (Linnaeus) 200000302111100007 Epaphius secalis (Paykull) 151278804003000040007 Leistus rufomarginatus (Duftshmid) 77103400230000000006 Notiophilus biguttatus (Fabricius) 122001010000000005 Calathus melanocephalus (Linnaeus) 010010000021000004 Carabus hortensis Linnaeus 5275000109000000000003 Calathus mollis (Marsham) 090000000010000002 Calathus micropterus (Duftschmid) 0201000000000000002 Dischirius globosus (Herbst) 000000000040000001 Leistus ferrugineus (Linnaeus) 100000000000000001 Calathus fuscipes (Goeze) 000060000000000001 Carabus cancelatus Illiger 001000000000000001 Occurrences18171613 1211 10 98766324 The matrix sorted according to row and column totals (numbers of occurrences) containes two triangles. One contain species and site with very high matrix fill (numbers of occurrences, the second contains species and site with very low matrix fill. We call such a matrix nested.
10
ASites SpeciesACFDGEBHSum 1111111118 2111111107 3111111006 4111100004 5111000003 6111000003 7111000003 8110000002 9110000002 10110000002 11100000001 12100000001 Sum121074332142 A perfectly nested matrix A perfectly nested (ordered) matrix can be divided into a completely filled and an empty part. ASites SpeciesACFDGEBHSum 1111011117 2111111107 3011111005 4111100004 5111000003 6111001004 7111000003 8110000002 9110000002 10110000002 11100001002 12100000001 Sum111073352142 Imperfectly nested matrices have holes (unexpected absences) and outliers (unexpected occurrences). The number of holes and outlier with respect to the perfectly ordered state is a measure of the degree of nestedness. The discrepancy metric counts the number of holes that have to be filled by outliers of the same row or column to form a perfectly nested matrix.
11
Speciesgilfullipsoskorguc3pogheldabwronmilwil2pogterwrosswi1pog Occurren- ces Carabus granulatus 1101211359154255211 1807711 191015 Pterostichus melanarius 34518770442811996013169172639429364013015 Pterostichus strennus (Panzer) 30132414285364732275054015 Oxypselaphus obscurus (Herbst) 166277278968027096854825013370114 Pterostichus diligens (Sturm) 1811541101125041103013 Synuchus vivalis (Illiger) 2419514121051020120014012 Patrobus atrorufus (Stroem) 348113735119220812006072012 Carabus nemoralis Muller 81451210611652000060011 Pterostichus antracinus 2102021011002744611001110 Pterostichus minor (Gyllenhal) 4800210710025280210510 Notiophilus palustris (Duftshmid) 127140220100000008 Stomis pumicatus (Panzer) 11250140125000000008 Clivina fossor (Linnaeus) 200000302111100007 Epaphius secalis (Paykull) 151278804003000040007 Leistus rufomarginatus (Duftshmid) 77103400230000000006 Notiophilus biguttatus (Fabricius) 122001010000000005 Calathus melanocephalus (Linnaeus) 010010000021000004 Carabus hortensis Linnaeus 5275000109000000000003 Calathus mollis (Marsham) 090000000010000002 Calathus micropterus (Duftschmid) 0201000000000000002 Dischirius globosus (Herbst) 000000000040000001 Leistus ferrugineus (Linnaeus) 100000000000000001 Calathus fuscipes (Goeze) 000060000000000001 Carabus cancelatus Illiger 001000000000000001 Occurrences18171613 1211 10 98766324 Nestedness analysis surves to find idiosyncratic species that means species that deviate from the general trend of community organization..Often these species do not belong to the guild of species under study while having different habitat requirements.
12
Variable 3pogsos2pogdabwrosgilter1pogwilmilswikorhellipwron Organic matter content 8.407.987.487.276.796.174.284.264.033.153.132.731.291.230.91 Temperature 0.823.751.202.141.922.191.230.331.660.892.602.243.502.061.43 Species 3pogsos2pogdabwrosgilter1pogwilmilswikorhellipwron Occurren ces Carabus granulatus 525911 191101107701154111131813 Pterostichus melanarius 134283617034540293941311991697042613 Pterostichus strennus (Panzer) 31454753000722428624313 Oxypselaphus obscurus (Herbst) 27278096371661312548096078512 Pterostichus diligens (Sturm) 0511201810403411511 Synuchus vivalis (Illiger) 21125102400021441050 Patrobus atrorufus (Stroem) 223568173480000211037210 Pterostichus antracinus 0010021111462740211209 Pterostichus minor (Gyllenhal) 1210014825285000029 Carabus nemoralis Muller 1120568000001016529 Notiophilus palustris (Duftshmid) 2100010000042717 Clivina fossor (Linnaeus) 3012020011000017 Stomis pumicatus (Panzer) 150050100000142207 Leistus rufomarginatus (Duftshmid) 24000770000003305 Epaphius secalis (Paykull) 08030154000000805 Notiophilus biguttatus (Fabricius) 0000010000001203 Calathus melanocephalus (Linnaeus) 0000000012010003 Calathus mollis (Marsham) 0000000001000001 Dischirius globosus (Herbst) 0000000004000001 Leistus ferrugineus (Linnaeus) 0000010000000001 Carabus hortensis Linnaeus 00000520000000001 Calathus micropterus (Duftschmid) 0000000000000101 Calathus fuscipes (Goeze) 0000000000060001 Carabus cancelatus Illiger 0000000000000101 Analysis of ecological gradients Nestedness analysis helps to identify species that run counter to ecological gradients Nestedness analysis is particulalry an analysis of ecological gradients
13
ASites SpeciesACFDGEBHSum 1111111118 21 1 0111005 3101010115 4101111005 5111000104 6111001004 7 0 10100002 8 0 11000002 9110000002 10 1 00010002 11000100012 12100000001 Sum9765543342 Statistical inference using null models SpeciesACFDGEBHSum 1111111118 21 1 0111005 3101010115 4101111005 5111000104 6111001004 7 0 10100002 8 0 11000002 9110000002 10 1 00010002 11000100012 12100000001 Sum9765543343 We have to infer how many discrepancies are expected just by chance. Checkerboards We randomize the matrix switching checkerboards. This retains row and column totals and therefore basic matrix properties. Observed discrepancy D = 11 Nested Antinested Lower 5% CL Upper 5% CL Observed 1. Use 10*sites*species checkerboard swaps per matrix to randomize. 2. Calculate discrepancy. 3. Repeat steps 1 and 2 1000 times to get the null distribtuion. 4. Compare the observed discepancy with the expected one.
15
Both matrices are not significantly nested. There are not more idiosyncratic sites and species than expected just by chance. Low dispersal Carabidae do not colonize lake island according to organic matter content (soil fertility). Our first eysight impression was wrong. Always ask whether an observed pattern or process might exist just by chance.
16
Today’s reading Local and regional species richness: http://www.springerlink.com/content/ug m5380764049730/ http://www.springerlink.com/content/ug m5380764049730/ Nestedness and null models: www.uvm.edu/~ngotelli/manuscriptpdfs/ UlrichConsumersGuide.pdf www.uvm.edu/~ngotelli/manuscriptpdfs/ UlrichConsumersGuide.pdf Community assembly: www.msstate.edu/courses/etl5/Commu nity%20Assembly1.ppt www.msstate.edu/courses/etl5/Commu nity%20Assembly1.ppt
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.