Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chemical Kinetics Ch 13 We have learned that enthalpy is the sum of the internal energy plus the energy associated with the work done by the system (PV)

Similar presentations


Presentation on theme: "Chemical Kinetics Ch 13 We have learned that enthalpy is the sum of the internal energy plus the energy associated with the work done by the system (PV)"— Presentation transcript:

1 Chemical Kinetics Ch 13 We have learned that enthalpy is the sum of the internal energy plus the energy associated with the work done by the system (PV) on the atmosphere In addition, entropy and Gibb’s Free Energy predict whether a reaction will occur or not Now we will examine the rate at which a reaction will proceed

2 Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or a product with time (M/s). A B rate = -  [A] tt rate =  [B] tt  [A] = change in concentration of A over time period  t  [B] = change in concentration of B over time period  t Because [A] decreases with time,  [A] is negative. 13.1

3 A B 13.1 rate = -  [A] tt rate = [B][B] tt time

4 Br 2 (aq) + HCOOH (aq) 2Br - (aq) + 2H + (aq) + CO 2 (g) time 393 nm light Detector  [Br 2 ]   Absorption 393 nm Br 2 (aq) 13.1

5 Br 2 (aq) + HCOOH (aq) 2Br - (aq) + 2H + (aq) + CO 2 (g) average rate = -  [Br 2 ] tt = - [Br 2 ] final – [Br 2 ] initial t final - t initial slope of tangent slope of tangent slope of tangent instantaneous rate = rate for specific instance in time 13.1

6 rate  [Br 2 ] rate = k [Br 2 ] k = rate [Br 2 ] 13.1 = rate constant = 3.50 x 10 -3 s -1

7 2H 2 O 2 (aq) 2H 2 O (l) + O 2 (g) PV = nRT P = RT = [O 2 ]RT n V [O 2 ] = P RT 1 rate =  [O 2 ] tt RT 1 PP tt = measure  P over time 13.1

8 2H 2 O 2 (aq) 2H 2 O (l) + O 2 (g) 13.1

9 Reaction Rates and Stoichiometry 13.1 2A B Two moles of A disappear for each mole of B that is formed. rate =  [B] tt rate = -  [A] tt 1 2 aA + bB cC + dD rate = -  [A] tt 1 a = -  [B] tt 1 b =  [C] tt 1 c =  [D] tt 1 d

10 Write the rate expression for the following reaction: CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O (g) rate = -  [CH 4 ] tt = -  [O 2 ] tt 1 2 =  [H 2 O] tt 1 2 =  [CO 2 ] tt 13.1

11 The Rate Law 13.2 The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers. aA + bB cC + dD Rate = k [A] x [B] y reaction is xth order in A reaction is yth order in B reaction is (x +y)th order overall

12 F 2 (g) + 2ClO 2 (g) 2FClO 2 (g) rate = k [F 2 ] x [ClO 2 ] y Double [F 2 ] with [ClO 2 ] constant Rate doubles x = 1 Quadruple [ClO 2 ] with [F 2 ] constant Rate quadruples y = 1 rate = k [F 2 ][ClO 2 ] 13.2

13 F 2 (g) + 2ClO 2 (g) 2FClO 2 (g) rate = k [F 2 ][ClO 2 ] Rate Laws Rate laws are always determined experimentally. Reaction order is always defined in terms of reactant (not product) concentrations. The order of a reactant is not related to the stoichiometric coefficient of the reactant in the balanced chemical equation. 1 13.2

14 Determine the rate law and calculate the rate constant for the following reaction from the following data: S 2 O 8 2- (aq) + 3I - (aq) 2SO 4 2- (aq) + I 3 - (aq) Experiment [S 2 O 8 2- ][I - ] Initial Rate (M/s) 10.080.0342.2 x 10 -4 20.080.0171.1 x 10 -4 30.160.0172.2 x 10 -4 rate = k [S 2 O 8 2- ] x [I - ] y Double [I - ], rate doubles (experiment 1 & 2) y = 1 Double [S 2 O 8 2- ], rate doubles (experiment 2 & 3) x = 1 k = rate [S 2 O 8 2- ][I - ] = 2.2 x 10 -4 M/s (0.08 M)(0.034 M) = 0.08/M s 13.2 rate = k [S 2 O 8 2- ][I - ]

15 Definitions: 1 st Order Reaction First Order Reaction: The reaction that occurs first, not always the one desired. For example, the formation of brown gunk in an organic prep.

16 First-Order Reactions 13.3 A product rate = -  [A] tt rate = k [A] k = rate [A] = 1/s or s -1 M/sM/s M =  [A] tt = k [A] - [A] is the concentration of A at any time t [A] 0 is the concentration of A at time t=0 [A] = [A] 0 exp(-kt) ln[A] = ln[A] 0 - kt

17 Definitions: Physical Chemistry The pitiful attempt to apply y=mx+b to everything in the universe.

18 Decomposition of N 2 O 5 13.3

19 Learn this equation & how to use

20 An Example A reaction is 25% complete in 42 seconds. Calculate the half life. Ln 1/.75=-.287, Div by 42 and k=6.84x10 -3 T 1/2 =0.693/k=101 s

21 The reaction 2A B is first order in A with a rate constant of 2.8 x 10 -2 s -1 at 80 0 C. How long will it take for A to decrease from 0.88 M to 0.14 M ? ln[A] = ln[A] 0 - kt kt = ln[A] 0 – ln[A] t = ln[A] 0 – ln[A] k = 66 s [A] 0 = 0.88 M [A] = 0.14 M ln [A] 0 [A] k = ln 0.88 M 0.14 M 2.8 x 10 -2 s -1 = 13.3

22 First-Order Reactions 13.3 The half-life, t ½, is the time required for the concentration of a reactant to decrease to half of its initial concentration. t ½ = t when [A] = [A] 0 /2 ln [A] 0 [A] 0 /2 k = t½t½ ln2 k = 0.693 k = What is the half-life of N 2 O 5 if it decomposes with a rate constant of 5.7 x 10 -4 s -1 ? t½t½ ln2 k = 0.693 5.7 x 10 -4 s -1 = = 1200 s = 20 minutes How do you know decomposition is first order? units of k (s -1 )

23 A product First-order reaction # of half-lives [A] = [A] 0 /n 1 2 3 4 2 4 8 16 13.3

24

25 Second-Order Reactions- ignore 13.3

26 Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions OrderRate Law Concentration-Time Equation Half-Life 0 1 2 rate = k rate = k [A] rate = k [A] 2 ln[A] = ln[A] 0 - kt 1 [A] = 1 [A] 0 + kt [A] = [A] 0 - kt t½t½ ln2 k = t ½ = [A] 0 2k2k t ½ = 1 k[A] 0 13.3

27 A + B C + D Exothermic Reaction Endothermic Reaction The activation energy (E a ) is the minimum amount of energy required to initiate a chemical reaction. 13.4

28 Temperature Dependence of the Rate Constant also known as the Arrhenius equation k = A exp( -E a /RT ) E a is the activation energy (J/mol) R is the gas constant (8.314 J/Kmol) T is the absolute temperature A is the frequency factor lnk = - EaEa R 1 T + lnA (Arrhenius equation) 13.4

29 Activation Energy The useful quantity of energy available in one cup of coffee

30 Zero-Order Reactions 13.3 A product rate = -  [A] tt rate = k [A] 0 = k k = rate [A] 0 = M/s  [A] tt = k - [A] is the concentration of A at any time t [A] 0 is the concentration of A at time t=0 t ½ = t when [A] = [A] 0 /2 t ½ = [A] 0 2k2k [A] = [A] 0 - kt

31 13.4 lnk = - EaEa R 1 T + lnA

32 13.4

33 A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed. k = A exp( -E a /RT )EaEa k uncatalyzedcatalyzed rate catalyzed > rate uncatalyzed E a < E a ‘ 13.6

34 In heterogeneous catalysis, the reactants and the catalysts are in different phases. In homogeneous catalysis, the reactants and the catalysts are dispersed in a single phase, usually liquid. Haber synthesis of ammonia Ostwald process for the production of nitric acid Catalytic converters Acid catalysis Base catalysis 13.6

35 N 2 (g) + 3H 2 (g) 2NH 3 (g) Fe/Al 2 O 3 /K 2 O catalyst Haber Process 13.6

36 Ostwald Process Hot Pt wire over NH 3 solution Pt-Rh catalysts used in Ostwald process 4NH 3 (g) + 5O 2 (g) 4NO (g) + 6H 2 O (g) Pt catalyst 2NO (g) + O 2 (g) 2NO 2 (g) 2NO 2 (g) + H 2 O (l) HNO 2 (aq) + HNO 3 (aq) 13.6

37 Catalytic Converters 13.6 CO + Unburned Hydrocarbons + O 2 CO 2 + H 2 O catalytic converter 2NO + 2NO 2 2N 2 + 3O 2 catalytic converter

38 Enzyme Catalysis 13.6

39 uncatalyzed enzyme catalyzed 13.6 rate =  [P] tt rate = k [ES]


Download ppt "Chemical Kinetics Ch 13 We have learned that enthalpy is the sum of the internal energy plus the energy associated with the work done by the system (PV)"

Similar presentations


Ads by Google