Download presentation
Presentation is loading. Please wait.
1
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe » laser scenarios Large amplitude collective motion : fission M. Dinh(Toulouse), P. G. Reinhard (Erlangen), ES Metal clusters and nuclei, theory and experiments Optical response as preferred tool of analysis Pump probe scenarios
2
Coulomb repulsion Neutrons Scission Collective variable Potential Time resolved nuclear fission Fission of a hot nucleus 1 source2 sources Measure i) number of emitted neutrons ii) angular distribution 1 nucleus : « isotropic » 2 nuclei : « anisotropic » i ) Fission time ~ 10 -20 s ii) Nuclear viscosity
3
Neutrons, Protons Ions, Electrons Atomic Nuclei Metal clusters SizesN < 3003 < N < 10 5-7 Constituents Fermions Nuclei and metal clusters Radius ~ r 0,s N 1/3 r 0 ~ 1fmr s ~ 0.1-0.3 nm r 0,s relevant length/energy scales Inter-constituents distance d ~ 1.5-2 r 0,s Fermi energy F = h 2 /2m (3 ) 2/3 1/r 0,s 2 ~ 2 / k F ~ r 0,s Strongly quantum systems Long de Broglie wavelength (ground state) Finite Fermi liquid droplets Fermi gas estimate
4
Basic theory of nuclei and metal clusters ▶ Nuclei Nucleon-nucleon interaction between 1-300… nucleons ▶ Metal clusters Binding (delocalized electrons) between 1-10000… atoms MEANFIELDMEANFIELD Shells, collective motion (resonances, fission…) … 82 50 28 20 8 2 … 138 92 40 20 8 2 Free nucleonsNucleons IN nucleusNucleus ClusterAtom IN cluster Free atom
5
Time Dependent Density Functional Theory (TDDFT) Ensemble of orbitals (1 electron) / no correlation One body density Effective mean field theory (Kohn-Sham) Model of metal clusters Explicit ions via pseudo potentials Detail of structure + ionic dynamics Ions Electrons Kohn-Sham potentialIons + ext. Local Density Approximation (LDA) (+ Self Interaction Corrections) Semi classical theory possible TDLDA Vlasov Exch. + Corr.Hartree
6
Plasmon (collect. oscill. electrons/ions) Ionic times Electron-electron collis. Electron evaporation A few time scales Units : microscopic time in r s,0 /v F - temperature in F Alkalines (Li, Na, K, Rb, Cs) 1 fs 100 fs 10 fs Nuclei 10 fm/c 1000 fm/c 100 fm/c
7
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield ( ) d /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster
8
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield ( ) d /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster
9
Optical response : deformation effects Deformation vs Optical response splitting Optical follow up of fission …? Collective motion of electrons / ions K 12 ++ K 3 + + K 9 + What about fission ?
10
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield ( ) d /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster
11
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster Ionization Yield Photon energy
12
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster Ionization Yield Photon energy
13
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster Ionization Yield Photon energy
14
Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q) h electrons cluster Ionization Yield Photon energy
15
Pump – probe for fission : principle Probe ⃕ Ionization Pump Time / Delay Plasmon high low 2 parameters : delay AND frequency / Ioniz. Mie
16
Dinh et al, 2004 Pump – probe for fission : example Na 14 + Na 14 3+ Na 6 + + Na 8 2+ Access to fission time Fission dynamics Viscosity…
17
▶ Fast developping field of cluster dynamics Linear and semi linear domain Ex: optical response, photoelectrons spectra … Clusters in intense laser field Ex: pump/probe dynamics, Coulomb explosion… Relations to other fields Ex: embedded/deposited clusters, biological systems … Some conclusions and perspectives ▶ Dynamics of metal clusters Similarities between metal clusters and nuclei Finite Fermi liquid droplets, mean-field approaches … Collective modes Optical response as a tool of analysis of structure and dynamics Pump probe analysis of fission
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.