Presentation is loading. Please wait.

Presentation is loading. Please wait.

Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.

Similar presentations


Presentation on theme: "Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe."— Presentation transcript:

1 Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe » laser scenarios Large amplitude collective motion : fission M. Dinh(Toulouse), P. G. Reinhard (Erlangen), ES Metal clusters and nuclei, theory and experiments Optical response as preferred tool of analysis Pump probe scenarios

2 Coulomb repulsion Neutrons Scission Collective variable Potential Time resolved nuclear fission Fission of a hot nucleus 1 source2 sources Measure i) number of emitted neutrons ii) angular distribution 1 nucleus : « isotropic » 2 nuclei : « anisotropic » i ) Fission time  ~ 10 -20 s ii) Nuclear viscosity

3 Neutrons, Protons Ions, Electrons Atomic Nuclei Metal clusters SizesN < 3003 < N < 10 5-7 Constituents Fermions Nuclei and metal clusters Radius ~ r 0,s N 1/3 r 0 ~ 1fmr s ~ 0.1-0.3 nm  r 0,s relevant length/energy scales  Inter-constituents distance d ~ 1.5-2 r 0,s  Fermi energy  F = h 2 /2m (3  ) 2/3 1/r 0,s 2  ~ 2  / k F ~  r 0,s Strongly quantum systems  Long de Broglie wavelength (ground state) Finite Fermi liquid droplets Fermi gas estimate

4 Basic theory of nuclei and metal clusters ▶ Nuclei Nucleon-nucleon interaction between 1-300… nucleons ▶ Metal clusters Binding (delocalized electrons) between 1-10000… atoms MEANFIELDMEANFIELD Shells, collective motion (resonances, fission…) … 82 50 28 20 8 2 … 138 92 40 20 8 2 Free nucleonsNucleons IN nucleusNucleus ClusterAtom IN cluster Free atom

5 Time Dependent Density Functional Theory (TDDFT) Ensemble of orbitals (1 electron) / no correlation One body density Effective mean field theory (Kohn-Sham) Model of metal clusters Explicit ions via pseudo potentials Detail of structure + ionic dynamics  Ions  Electrons Kohn-Sham potentialIons + ext. Local Density Approximation (LDA) (+ Self Interaction Corrections) Semi classical theory possible TDLDA  Vlasov Exch. + Corr.Hartree

6 Plasmon (collect. oscill. electrons/ions) Ionic times Electron-electron collis. Electron evaporation A few time scales Units : microscopic time in r s,0 /v F - temperature in  F Alkalines (Li, Na, K, Rb, Cs) 1 fs 100 fs 10 fs Nuclei 10 fm/c 1000 fm/c 100 fm/c

7 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield  (  ) d  /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster

8 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield  (  ) d  /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster

9 Optical response : deformation effects Deformation vs Optical response splitting Optical follow up of fission …? Collective motion of electrons / ions K 12 ++  K 3 + + K 9 + What about fission ? 

10 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield  (  ) d  /dE Photoabsorption Yield Photon energy Optical response Deformations Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster

11 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d  /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster Ionization Yield Photon energy

12 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d  /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster Ionization Yield Photon energy  

13 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d  /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster Ionization Yield Photon energy 

14 Experimental signals from metal clusters Laser polarization Electron energy Photoelectrons Yield d  /dE Photoabsorption Yield Photon energy Abundances Magic numbers Ionization potentials Single particle energies Mass spectrum Yield Ion « mass » (m/q)  h electrons cluster Ionization Yield Photon energy 

15 Pump – probe for fission : principle Probe ⃕ Ionization Pump Time / Delay Plasmon high  low  2 parameters : delay AND frequency  / Ioniz. Mie

16 Dinh et al, 2004 Pump – probe for fission : example Na 14 +   Na 14 3+    Na 6 + + Na 8 2+ Access to fission time Fission dynamics Viscosity…

17 ▶ Fast developping field of cluster dynamics Linear and semi linear domain Ex: optical response, photoelectrons spectra … Clusters in intense laser field Ex: pump/probe dynamics, Coulomb explosion… Relations to other fields Ex: embedded/deposited clusters, biological systems … Some conclusions and perspectives ▶ Dynamics of metal clusters Similarities between metal clusters and nuclei Finite Fermi liquid droplets, mean-field approaches … Collective modes Optical response as a tool of analysis of structure and dynamics Pump probe analysis of fission

18


Download ppt "Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe."

Similar presentations


Ads by Google