Download presentation
Presentation is loading. Please wait.
2
Resonant photon absorption The Mossbauer effect
3
Photon attenuation Radiation attenuation by: -- photoelectric effect -- compton scattering (E << 1.02 MeV) Atomic interactions SourceDetector Absorber xx
4
Photon attenuation Consider nuclear resonant absorption SourceDetector Absorber xx 0.0 E*E* E*E* Assume source and absorber are identical
5
Kinematics Assume source and absorber are identical SourceDetector Absorber xx 0.0 E*E* E*E* emissionabsorption for resonant absorption
6
SourceAbsorber Ignore energy scale
7
Estimates Consider an 57 Fe source 57 Co 57 CoFe 0.0 E*E* E*E* Natural width of the state
8
Enter -- Mr. Mossbauer Place 57 Fe source bound in a metal matrix Place 57 Fe absorber bound in a metal matrix Resonant Absorption!
9
Kinematics Assume source and absorber are identical -v+v SourceDetector Absorber xx 0.0 E*E* E*E* move source Doppler shift frequency: h ’- h = E D
10
SourceAbsorber -v no resonant absorption
11
SourceAbsorber -v no resonant absorption
12
SourceAbsorber -v small resonant absorption
13
SourceAbsorber -v more resonant absorption
14
SourceAbsorber v = 0.0 maximum resonant absorption
15
SourceAbsorber -v less resonant absorption
16
SourceAbsorber -v small resonant absorption
17
SourceAbsorber -v no resonant absorption
18
SourceAbsorber -v no resonant absorption
19
Resulting transmission curve
20
Kinematics Assume source and absorber are NOT identical SourceDetector Absorber xx 0.0 Ea*Ea* Es*Es*
21
Doppler kinematics Assume source and absorber are NOT identical Resonant absorption when - -v+v SourceDetector Absorber xx 0.0 Ea*Ea* Es*Es* move absorber!
22
Source Absorber transition energy shifted -v no resonant absorption
23
Source -v small resonant absorption Absorber transition energy shifted
24
Source -v more resonant absorption Absorber transition energy shifted
25
Source -v more resonant absorption Absorber transition energy shifted
26
Source v = 0.0 less resonant absorption Absorber transition energy shifted
27
Source -v small resonant absorption Absorber transition energy shifted
28
Source -v no resonant absorption Absorber transition energy shifted
29
Source -v no resonant absorption Absorber transition energy shifted
30
Source -v no resonant absorption Absorber transition energy shifted
31
Doppler energy shifted “Isotope shift”
32
Isotope shift Resonant absorption when - -v+v SourceDetector Absorber xx move absorber! 0.0 Ea*Ea* Es*Es* Isotope shift: Level shifts due to atomic electronic charge distribution in the nucleus. Constant velocity data
33
57 Fe What is the J for the ground state and the 14.4 Kev state? ENSDF/NNDS What is the multipolarity of the transition? What is the degeneracy for the -- ground state and the -- 14.4 Kev state? If there is a B field, then we can have a nuclear Zeeman effect that will remove the degeneracies
34
57 Fe +v-v move source with constant acceleration SourceDetector Absorber xx 0.0 Es*Es* m-sublevels
35
Dipole transition selection rules
36
Mossbauer resonant absorption with constant acceleration -v+v 0 maximum +v maximum -v time v = 0 Source velocity curve Source displacement curve data vv tt Use MCS/MCA = dwell time = one channel
37
Possible absorption transitions SourceDetector Absorber xx 0.0 Es*Es* m-sublevels
38
Possible absorption transitions m-sublevels 654321
39
Possible absorption transitions Compare these predictions with the measurements… …follow guidelines in Problem. 10.C. and eventually determine
40
The Pound-Rebecca Experiment Be prepared to explain what the experiment discovered and how the Mossbauer resonant photon absorption was essential to the measurement.
41
Possible absorption transitions m-sublevels 654321 Case 1
42
Possible absorption transitions m-sublevels 563412 Case 2
43
Possible absorption transitions m-sublevels 652314 Case 3
44
Possible absorption transitions m-sublevels 652413 Case 4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.