Download presentation
Presentation is loading. Please wait.
1
Dual Sphere Detectors by Krishna Venkateswara
2
Contents Introduction Review of noise sources in bar detectors Spherical detectors Dual sphere configuration Sensitivity in SQL Advantages/Drawbacks Dual cylinders and sensitivity Summary
3
Introduction Proposed by M. Cerdonio, L. Conti et. al. in 2001 Two nested spheres Fabry-Perot cavity as motion sensor Main advantages Wide bandwidth Spherical detector
4
Bar detectors with resonant transducers Noise energy=Thermal + Amplifier + Back-action β = energy coupling factor τ = i ntegration time A large β is needed to reduce thermal noise.
5
Spherical Detectors A sphere has a spherical symmetry and 5 degenerate quadrupole modes. Uniform cross-section to GWs. Can determine both source direction (, ) and wave polarization (h+, h). Mount 6 radial transducers on truncated icosahedral configuration. “Spherically symmetric” detection of the sphere (Johnson & Merkowitz, 1993)
6
Dual sphere configuration Noise sources: Thermal noise Back-action noise Photon counting noise Inner sphere has quadrupole mode at f Outer sphere at 2-3 times f At frequencies in between, the two spheres are driven out of phase by GW
7
Noise spectral density for each sensor Response of the surface of a sphere to GW
8
Total strain noise density
9
Sensitivity at Standard Quantum Limit (SQL) Features R = 0.95 m, and a = 0.57 m Cross section proportional to ρv s 5 Molybdenum ρ = 10000 kg/m 3 and v s = 6.2 km/s Q ~ 20 million at T ≤ 4 K Input light power of 7 W, Q/T ≥ 2·10 8 K -1
10
Beryllium ρ = 1900 kg/m 3 and vs= 13 km/s, Q ? Input light power of 12 W, Q/T ≥ 2·10 8 K -1 Sapphire ρ = 4000 kg/m 3 and vs= 10 km/s Q > 10 8 at T < 10 K
11
Advantages/Drawbacks Wideband Spherical detector High sensitivity (at SQL) Different frequency band Complicated design Sensor sensitivity difficult to realize
12
Dual Cylinders Simpler design Each mode contributes to noise while signal is mainly from Quadrupole mode selective readout Low thermal noise from high frequency modes X d = x 1 – x 2 + x 3 – x 4
13
Readout and sensitivity Required displacement sensitivity ~ 3 * 10 -23 m/√Hz Demonstrated sensitivity ~ 5 * 10 -20 m/√Hz using a) Optomechanical sensor. b) Capacitive sensor using SQUID amplifiers.
14
Summary Offers advantage of spherical detection and wide bandwidth in an uncovered frequency band Requires advanced suspension and complicated construction Dual cylinder design gives up isotropic sensitivity but naturally supports ‘selective readout’ and simpler design Both require advances in optical transducers.
15
thank you!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.