Presentation is loading. Please wait.

Presentation is loading. Please wait.

R. Maingi, IAEA 2004 talk Page 1 Rajesh Maingi Oak Ridge National Laboratory C.E. Bush 1), E.D. Fredrickson 2), J.E. Menard 2), N. Nishino 3), A. L. Roquemore.

Similar presentations


Presentation on theme: "R. Maingi, IAEA 2004 talk Page 1 Rajesh Maingi Oak Ridge National Laboratory C.E. Bush 1), E.D. Fredrickson 2), J.E. Menard 2), N. Nishino 3), A. L. Roquemore."— Presentation transcript:

1 R. Maingi, IAEA 2004 talk Page 1 Rajesh Maingi Oak Ridge National Laboratory C.E. Bush 1), E.D. Fredrickson 2), J.E. Menard 2), N. Nishino 3), A. L. Roquemore 2), K. Tritz 8), S.J. Zweben 2), M.G. Bell 2), R.E. Bell 2), J. Boedo 4), D.A. Gates 2), D.W. Johnson 2), R. Kaita 2), S.M. Kaye 2), H.W. Kugel 2), B.P. LeBlanc 2), R.J. Maqueda 6), D. Mueller 2), S.A. Sabbagh 7), V.A. Soukhanovskii 5), D. Stutman 8) 1) Oak Ridge National Laboratory 2) Princeton Plasma Physics Laboratory 3) Hiroshima University, Japan4) Univ. California - San Diego 5) Lawrence Livermore National Laboratory6) Fusion Physics and Technology 7) Columbia University8) Johns Hopkins University IAEA Fusion Energy Conference Vilamoura, Portugal Nov. 2, 2004 ELM and L-H Transition Dynamics in NSTX Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec Supported by

2 R. Maingi, IAEA 2004 talk Page 2 High Performance, Small ELM regime Observed in NSTX ParametersValue Major Radius 0.85m Minor Radius 0.67m Plasma Current 1.5 MA Toroidal Field 0.45T NBI/RF Heating7.4/6 MW Outline Overview of ELM regimes Small ELM signatures Visible cameras at several poloidal locations Magnetics and soft X-rays Turbulence imaging during L-H transition

3 R. Maingi, IAEA 2004 talk Page 3 Many Different ELM types Observed in NSTX  W MHD /W MHD ~ 3-15% P heat >> P L-H  W MHD /W MHD ~ 1-5% P heat > P L-H  W MHD /W MHD < 1% Wide P heat range  W MHD /W MHD < 30% High P heat,  N D  [au] W MHD [kJ] Maingi, EPS2004 Large (Type I) Mid (Type II/III) Small (Type V) Mixed regime

4 R. Maingi, IAEA 2004 talk Page 4 Pedestal * e  1 Divides Type V and Mixed ELM regimes I p : 0.6-0.9 MA, B t =0.45 T, P NBI : 2-6 MW, LSN,  =2.0,  =0.4

5 R. Maingi, IAEA 2004 talk Page 5 Small ELMs (Type V) are an important ingredient of long pulse, high performance discharges P NBI /10 [MW]   Maingi, NF 2004 submitted L-H

6 R. Maingi, IAEA 2004 talk Page 6 Small ELMs are distinct, individual perturbations with signatures on D  and Ultra-Soft X-Rays Maingi, NF 2004 submitted P NBI /10 [MW]   L-H W MHD [kJ] D  [au] USXR [au] #108729

7 R. Maingi, IAEA 2004 talk Page 7 Plasma Fisheye TV Shows Localized Perturbation for Small ELM crash Bush (ORNL) #113024 515ms #113024 520ms

8 R. Maingi, IAEA 2004 talk Page 8 Plasma Fisheye TV Shows Localized Perturbation for Small ELM crash Bush (ORNL) #113024 515ms #113024 520ms Difference

9 R. Maingi, IAEA 2004 talk Page 9 Plasma Fisheye TV Suggests low-n Perturbation for Large (Type I) ELM Bush (ORNL) #112502, 510ms, 515ms, Difference (515ms - 510ms) #112502 510ms #112502 515ms Difference

10 R. Maingi, IAEA 2004 talk Page 10 Small ELMs have different spatial and temporal characteristics from turbulent filaments Nishino (U. Hiroshima), Roquemore Toroidal gap #109063: 0.593-0.605s FOV

11 R. Maingi, IAEA 2004 talk Page 11 Small ELM lifetime much longer than filament auto- correlation time ~ 30  s 0 75  s 175  s 250  s 375  s 500  s Midplane view of Small ELM Inner Strike Point Outer Strike point Filaments Toroidal gap ELM Growth/ decay #109063: 0.593-0.605s

12 R. Maingi, IAEA 2004 talk Page 12 Divertor visible camera shows Large (Small) ELMs do (not) burn-through inner divertor MARFE  Recycling light bands appear at larger major radius than outer strike point during small ELM Nishino (U. Hiroshima), Roquemore, Maingi (ORNL) [#112503] Inner separatrix Outer strike point

13 R. Maingi, IAEA 2004 talk Page 13 Large, dynamic structures observed in emitted light near X-point during small ELMs Outer strike point 0 225  s 325  s 400  s 475  s 600  s “Fingers” Inner separatrix Divertor MARFE #112503@398ms Delay between in and out perturbations ~ 250-400  s during small ELMs, and 100-200  s during large ones

14 R. Maingi, IAEA 2004 talk Page 14 Outer divertor perturbation relatively larger during small ELM Soukhanovskii, LLNL Divertor D  [au] -624  s 0  s 208  s 624  s #112503-frames 1375-81

15 R. Maingi, IAEA 2004 talk Page 15 Outer divertor perturbation relatively larger during small ELM and occurs 1-2 frames (200-400  s) before inner divertor Soukhanovskii, LLNL Divertor D  [au] -624  s 0  s 208  s 624  s 0  s 208  s 624  s #112503-frames 1375-81 Delay suggests leakage of ELM flux on outboard side near the X- point and convective transport to target ( || = 40 m, T i ped =200 eV)

16 R. Maingi, IAEA 2004 talk Page 16 n=1 pre-cursor to small ELMs propagates toroidally counter to I p and poloidally away from X-point Top POLOIDAL Bottom TOROIDAL Divertor D  Menard Wall B z

17 R. Maingi, IAEA 2004 talk Page 17 n=1 pre-cursor to small ELMs propagates toroidally counter to I p and poloidally away from X-point Top POLOIDAL Bottom TOROIDAL Divertor D  Menard Wall B z Tritz, JHU

18 R. Maingi, IAEA 2004 talk Page 18 n=1 pre-cursor to small ELMs propagates toroidally counter to I p and poloidally away from X-point Top POLOIDAL Bottom TOROIDAL Divertor D  Menard First sign of perturbation Wall B z Tritz, JHU

19 R. Maingi, IAEA 2004 talk Page 19 n=1 pre-cursor to small ELMs propagates toroidally counter to I p and poloidally away from X-point Top POLOIDAL Bottom TOROIDAL Divertor D  Menard First sign of perturbation Wall B z Tritz, JHU Leakage location?

20 R. Maingi, IAEA 2004 talk Page 20 Gas Puff Imaging Used for L-H transition Study Looks at D  or HeI light from gas puff I  n o n e f(n e,T e ) View ≈ along B field line to see 2-D structure  B Image coupled to camera with 800 x 1000 fiber bundle viewing area ≈ 20x25 cm Zweben, Munsat, Bush (ORNL)

21 R. Maingi, IAEA 2004 talk Page 21 Turbulence quench time < 100  sec during L-H transition (gas puff imaging) Zweben, Munsat, Bush (ORNL) No obvious change in edge flow pattern before L-H

22 R. Maingi, IAEA 2004 talk Page 22 Quiescent periods sometimes precede full L-H Zweben, Munsat, Bush (ORNL)

23 R. Maingi, IAEA 2004 talk Page 23 Summary and Conclusions  Small ELMs, Type V, compatible with high performance  No measurable impact on stored energy per ELM  Lots of structure near X-point - “fingers”  Delay of inboard signature relative to outboard longer than large ELM  Possible ELM leakage onto open field lines near X-point  Extrapolable to lower * e ?  Edge turbulence quenched in 100  sec before L-H transition  No clear change in edge flow patterns  Quiescent periods often precede L-H transition

24 R. Maingi, IAEA 2004 talk Page 24 Backup

25 R. Maingi, IAEA 2004 talk Page 25 Type I “ELM” can cause drop in edge n e and global T e perturbation Tritz, NSTX Research Forum 2005 (LeBlanc) Propagation from edge into core via USXR imaging in < 1 msec

26 R. Maingi, IAEA 2004 talk Page 26 Gas Puff Imaging system shows Type I ELM structure near outer midplane  Large Type I ELM near t=0.3504 sec looks like L-mode images with ‘blob’ frequency increasing > 100% Zweben, Munsat, Bush (ORNL)

27 R. Maingi, IAEA 2004 talk Page 27 Gas Puff Imaging system shows Type I ELM structure near outer midplane  Large Type I ELM near t=0.3504 sec looks like L-mode images with ‘blob’ frequency increasing > 100% Zweben, Munsat, Bush (ORNL)

28 R. Maingi, IAEA 2004 talk Page 28 Divertor visible camera shows Type I ELM burning through inner divertor MARFE-like region  Approximate camera field of view in LHS yellow box Nishino (U. Hiroshima), Roquemore, Maingi (ORNL) [#112503] Inner separatrix Outer strike point

29 R. Maingi, IAEA 2004 talk Page 29 Type I ELMs burn through MARFE-like region near inner X- point 140 145 150 155 160 165 Inner Separatrix Outer Strike point MARFE-like region All data with 24.7  s time between frames; relative frames numbers indicated

30 R. Maingi, IAEA 2004 talk Page 30 D  [au] W MHD [kJ] “Ped.” USXR “Sep” USXR Odd-n MHD hd-12 [au] 0.2-40 kHz [au] 40-400 kHz [au] crash Characteristics of Type II/III ELMs hd-14 [au] Fishbones Little impact per each ELM Outflux from pedestal Influx to SOL Or separatrix Low frequency 2 kHz pre-cursor High frequency crash

31 R. Maingi, IAEA 2004 talk Page 31 Gas Puff Imaging system shows Type III ELM structure near outer midplane  Smaller events (blobs, but not Type V ELMs) precede Type III ELM near t=0.4515 sec #113409 Zweben, Munsat, Bush (ORNL)

32 R. Maingi, IAEA 2004 talk Page 32 Gas Puff Imaging system shows Type III ELM structure near outer midplane  Smaller events (blobs, but not Type V ELMs) precede Type III ELM near t=0.4515 sec #113409 Zweben, Munsat, Bush (ORNL)

33 R. Maingi, IAEA 2004 talk Page 33 Divertor visible camera shows periodic Type II/III ELM phenomenology  Magnetic outboard strike point perturbation preceded MARFE like structure formation on inner leg (approximate camera field of view in LHS yellow box) Nishino (U. Hiroshima), Roquemore, Maingi (ORNL) [#112165] Inner separatrix Outer strike point

34 R. Maingi, IAEA 2004 talk Page 34 Type III ELMs do not burn through MARFE-like region near inner X-point Inner Separatrix Outer Strike point MARFE-like region All data with 24.7  s time between frames; relative frames numbers indicated 250 40 42 50 70 200

35 R. Maingi, IAEA 2004 talk Page 35 Type I (III, V) ELMs do (not) burn through MARFE-like region near inner X-point 140 145 150 155 160 165 250 40 42 50 70 200 Inner Separatrix Outer Strike point MARFE-like region I III V All data with 24.7  s time between frames; relative frames numbers indicated ELMS from different shots or different time range within a shot 01 10 14 17 20 25

36 R. Maingi, IAEA 2004 talk Page 36 Gas Puff Imaging system shows Type V ELM structure near outer midplane  Smaller events (blobs, but not Type V ELMs) occur between two type V ELMs in video clip #113411 Zweben, Munsat, Bush (ORNL)

37 R. Maingi, IAEA 2004 talk Page 37 Gas Puff Imaging system shows Type V ELM structure near outer midplane Zweben, Munsat, Bush (ORNL) First Type V ELM Second Type V ELM #113409, t=0.4507-0.45111 s, 10  s/frame #113409, t=0.45259-0.453 s, 10  s/frame

38 R. Maingi, IAEA 2004 talk Page 38 L-H Transition Physics Summary  H-mode theories can separate well developed H-mode and L- modes  No predictive capability in going from L-H  Edge turbulence quenched in 100  sec before L-H transition  No clear change in edge flow patterns  Quiescent periods often precede L-H transition  Other results: fueling from center stack facilitates H-mode access  Sometimes translates into lower power threshold  Role of neutrals/charge exchange loss unclear

39 R. Maingi, IAEA 2004 talk Page 39 ELM stability –Obtain complete dataset (MSE, Thomson, edge probe, plasma fisheye TV, …) on which to test edge stability calculations before and after different ELM types –Identify pre-cursor mode #s –Relationship to pedestal pressure/gradient limits? Type II/III and V ELM dynamics and dependencies –Importance of MARFE –Dependence on shape and collisionality –Origin of structures/fingers in divertor light patterns? ELM Research Areas

40 R. Maingi, IAEA 2004 talk Page 40 Plasma Fisheye TV Suggests n>1 Perturbation for Medium-sized (Type II/III) ELM? Bush (ORNL) #113380, Difference (460ms - 455ms) #113409, Difference (390ms - 385ms)

41 R. Maingi, IAEA 2004 talk Page 41 Title? Characteristics of Mixed Small + Large “ELM” Discharge D  [au] W MHD [kJ] HD-12 USXR HD-14 USXR Odd-n MHD hd-12 [au] 0.2-40 kHz [au] hd-14 [au] 40-400 kHz [au] Small ELMs Type I ELM large  W MHD Outflux from pedestal Influx to SOL Or separatrix Large ELM


Download ppt "R. Maingi, IAEA 2004 talk Page 1 Rajesh Maingi Oak Ridge National Laboratory C.E. Bush 1), E.D. Fredrickson 2), J.E. Menard 2), N. Nishino 3), A. L. Roquemore."

Similar presentations


Ads by Google