Download presentation
Presentation is loading. Please wait.
1
2006.10.13 HYP2006 Mainz Quark-model baryon-baryon interactions and their applications to few-body systems Y. Fujiwara ( Kyoto) Y. Suzuki ( Niigata ) C. Nakamoto (Suzuka) M. Kohno ( Kyushu Dental ) K. Miyagawa ( Okayama) M. Kohno ( Kyushu Dental ) K. Miyagawa ( Okayama) 1. Introduction 2. B 8 B 8 interactions fss2 and FSS: spin-flavor SU 6 symmetry 3. B 8 interactions by quark-model G-matrix 4. Some applications 4.1. N interaction and 3 H Faddeev calculation 4.2 effective potential and 9 Be Faddeev calculation 4.3. s. p. potential and , (3N) potentials 4.4. N total cross sections and potential 5. Summary
2
2006.10.13 HYP2006 Mainz B 8 B 8 interactions by fss2 A natural and accurate description of NN, YN, YY interactions in terms of ( 3 q)-( 3 q) RGM Short-range repulsion and LS by quarks Medium-attraction and long-rang tensor by S, PS and V FSS meson exchange potentials (fss2) (Cf. FSS without V) Model Hamiltonian + (U ij Conf +U ij FB +∑ β U ij Sβ +∑ β U ij PSβ + ∑ β U ij Vβ ) 6 i<j ∑ 6 i =1 ∑ H = (m i +p i 2 /2m i ) + (3 q ) (3 q )| E-H| A { (3 q ) (3 q ) ( r )} =0 Phys. Rev. C64 (2001) 054001 Phys. Rev. C65 (2002) 014001 Phys. Rev. C54 (1996) 2180 QMPACK homepage QMPACK homepage http://qmpack.homelinux.com/~qmpack/index.php http://qmpack.homelinux.com/~qmpack/index.php PPNP in press Oka – Yazaki (1980) Arndt : SAID Nijmegen : NN-OnLine
3
Lippmann-Schwinger (LS) RGM Solve [ - H 0 - V RGM ( ) ] =0 with V RGM ( )=V D +G+ K in the mom. representation ( = E - E int ) Born kernel q f |V RGM ( ) |q i T-matrix, G-matrix 3-cluster Faddeev formalism using 3-cluster Faddeev formalism using V RGM ( ) P.T.P. 103 (2000) 755 1) non-local 2) energy-dependent 3) Pauli-forbidden states in N - N (I=1/2), - N - (I=0), - (I=1/2) 1 S 0 : i.e. SU 3 (11) s P.T.P. 107 (2002) 745; 993 self-consistency equation for : Ku=u
4
2006.10.13 HYP2006 Mainz B 8 interaction by quark-model G-matrix G (p, p’; K, , k F ) G (k’, q’; q 1, q’) V (k, q) V (p f, p i ) Wigner transform V W (R, q) : Wigner transform U(R)=V W (R, (h 2 /2 )(E-U(R)) Transcendental equation Schrödinger equation Lippmann - Schwinger equation exact E B, (E) E B W, W (E) k’=p’- p, q’=(p+p’)/2 k=p f - p i, q=(p f +p i )/2 - cluster folding B8B8B8B8 : “ (0s) 4 ” =0.257 fm -2 incident q 1 relative q’ in total c. m. k F =1.35 fm -1 q 1 =q for direct and knock-on k=k’
5
2006.10.13 HYP2006 Mainz n RGM by G-matrix of fss2 q 1 =0 q’= 3/5 k F k F =1.35 fm -1 exp “constant K, , k F ” S 1/2 P 3/2 P 1/2 n sactt. phase shift
6
B 8 B 8 systems classified in the SU 3 states with (, ) [ ‐ (11) a +(30)] [(11) a +(30)] (03) [(11) s +3(22)] [3(11) s ‐( 22 ) ] (22) ‐3‐3 ― (11) a [ ‐ (11) a + (30)+(03)] [(30) ‐ (03)] ― [2(11) a + (30)+(03)] ― (11) s + (22)+ (00) (11) s ‐ (22)+ (00) (11) s + (22) ー (11) s + (22) (11) s - (22) - (00) ― (22) (30) ― (22) [ ‐ (11) a +(03)] [(11) a +(03)] (30) [(11) s +3(22)] [3(11) s ‐ (22)] (22) ‐1‐1 (03) ― (22) NN(0) NN(1) 3 E, 1 O ( P =antisymmetric) 1 E, 3 O ( P =symmetric)B 8 B 8 (I)S (11) s complete Pauli forbidden (30) almost forbidden ( =2/9) ‐2‐2 0 ‐4‐4
7
Spin-flavor SU 6 symmetry 1. Quark-model Hamiltonian is approximately SU 3 scalar (assumption) ・ no confinement contribution (assumption) ・ Fermi-Breit int. … quark-mass dependence only ・ EMEP … automatic SU 3 relations for coupling constants phenomenologyCf. OBEP: exp data g, f, … (integrated) phenomenology Cf. OBEP: exp data g, f, … (integrated) 2. -on plays an important role through SU 3 relations and FSB m 3. effect of the flavor symm. breaking (FSB) by m s >m ud, B, M masses Characteristics of SU 3 channels 1 S, 3 P ( P -symmetric) 3 S, 1 P ( P -antisymmetric) pp (22) attractive pp np (03) strongly attractive np N(I=1/2) (11) s strongly repulsive N(I=1/2) N(I=3/2) (30) strongly repulsive N(I=3/2) (00) strongly attractive H-particle channel H-particle channel N(I=0) (11) a weakly attractive N(I=0) “only this part is ambiguous” “only this part is ambiguous”
8
(22) S=0 S= ‐ 2 S= ‐ 3 S= ‐ 4 S= ‐ 1 1S01S01S01S0 1 S 0 phase shifts for B 8 B 8 interactions with the pure (22) state (fss2)
9
(03) (30) (11) a NN (03) central only (no tensor) NN (3/2) N (0) (0) N (3/2) 3S13S13S13S1 fss2 3 S 1 phase shifts (30) : Pauli repulsion (11)a : weakly attractive
10
+ p differential cross sections and + p, p asymmetries a( ) a exp =0.44±0.2 at p =800±200 MeV/c Kadowaki et al. (KEK-PS E452) Euro. Phys. J. A15 (2002) 295 Ahnet al.(KEK-PS E251, E289) Ahn et al. (KEK-PS E251, E289) NP A648(1999)263, A761(2005)41 350 MeV/c p lab 750 MeV/c Kurosawa et al. (KEK-PS E452B) KEK preprint 2005-104 (2006) reported by K. Nakai + p elastic p elastic +p+p
11
2006.10.13 HYP2006 Mainz N interaction by fss2 fss2 FSS from 3 He Faddeev P-wave N is weakly attractive N - Ncoupling : 3 S 1 + 3 D 1 by one- tensor N - N coupling : 3 S 1 + 3 D 1 by one- tensor 1 P 1 + 3 P 1 by FB LS ( - ) 1 P 1 + 3 P 1 by FB LS ( - ) Backward/Forward ratio
12
2006.10.13 HYP2006 Mainz 3 H (hypertriton) u d u u d d p n u d s Λ(∑ 0 ) ~2 fm ~5 fm “ deute ron ” d = 2.22 MeV B Λ =130 ±50 keV N on-shell properties are directly reflected fss2 289 keV 0.80 FSS 878 keV 1.36 NN = 19.37 – 21.03 = - 1.66 d |= 17.50 – 19.72 = - 2.22 (MeV) 150 channel calculation P (%) 1 S 0 / 3 S 1 relative strength close to NSC89 exp’t Phys. Rev. C70, 024001 (2004) NN- NN CC Faddeev
13
2006.10.13 HYP2006 Mainz N 1 S 0 and 3 S 1 effective range parameters N 1 S 0 and 3 S 1 effective range parameters modela s (fm) r s (fm) a t (fm) r t (fm) B (keV)P (%) FSS - 5.41 2.26 - 1.03 4.208781.36 fss2 - 2.59 2.83 - 1.60 3.012890.80 NSC89 - 2.59 2.90 - 1.38 3.171430.5 “fss2” - 2.15 3.05 - 1.80 2.871450.53 “fss2”: m c 2 = 936 MeV 1,000 MeV Effect of the higher partial waves is large – 90 – 60 keV – vs. 20 – 30 keV in NSC89 favorable for 4 H (1 + ) B Λ exp =130 ±50 keV B (keV)fss2“fss2” 6 ch (S) 15 ch (SD) 102 ch (J 4) 150 ch (J 6) 137 198 288 289 44 85 145
14
effective local potentials by G-matrix B 8 B 8 interaction ND effective potentials quark-model N- N E B (exact) - - 3.62 MeV - - 3.18 MeV E B exp =3.12 0.02 MeV ‐‐ Cf. U (0) = ‐ 46 (FSS), ‐ 48 (fss2) MeV in symmetric matter
15
2006.10.13 HYP2006 Mainz (0) (3.04 MeV) 0+ 2+ -3.12 0.02 MeV 3067(3) keV 3024(3) keV -6.62 0.04 MeV 3026 keV 92 keV 1/2 + 5/2 + 3/2 + 8 Be + 5 He 9 Be calc. 43 5 E exp (3/2 + - 5/2 + ) = 43 5 keV Akikawa, Tamura et al. (BNL E930) Phys. Rev. Let. 88, 082501 (2002) 198 keV (fss2 quark+ ), 137 keV (FSS) : 3 5 times too large 9 Be 2 Faddeev for 9 Be + + + + RGM kernel (MN3R) effective pot. (SB u=0.98) exp’t 2828 keV Phys. Rev. C70, 024002, 0407002 (2004) s splitting by N LS Born kernel s splitting by N LS Born kernel
16
2006.10.13 HYP2006 Mainz s 9 Beby2 Faddeev using quark-model G-matrix LS Born kernel s splitting of 9 Be by 2 Faddeev using quark-model G-matrix LS Born kernel 0.5 0 0.7 0 0 N Born k F (fm -1 ) 1.071.20 1.35 - G-matrix S ( MeV fm 5 ) fss2 (cont) ‐ 10.5 ‐ 10.6 ‐ 10.7 -10.9 FSS (cont) -1.9-2.9 -3.6 -7.8 Faddeev E (keV) fss2 (cont) 188194 198 198 FSS (cont) 7 34 59 137 E exp (keV) 43 5 FSS (cont) reproduces E exp at k F =1.25 fm -1 ! P-wave N- N coupling by LS (-) is important. S-meson LS in fss2 is not favorable.
17
2006.10.13 HYP2006 Mainz potentials (V W C (R, 0)) by quark-model G-matrix interaction I=3/2 I=1/2 total fss2FSS The Pauli repulsion of N(I=3/2) 3 S 1 is very strong.
18
2006.10.13 HYP2006 Mainz (3N) potentials by quark-model G-matrix interaction ( 0 +, T=1/2 channel) E B (exact) =- 3.79 MeV E B (exact) =- 5.70 MeV FSS fss2 consistent with 4 He (0 + ) resonance (3N): (0s) 3 =0.22 fm -2 =0.22 fm -2 q 1 =0
19
( -, K + ) inclusive spectra on 28 Si exp: Noumi et al. PRL 89, 072301 (2002) ; 90, 049902 (E) (2003) Saha et al. Phys. Rev. C70, 044613 (2004) Saha et al. Phys. Rev. C70, 044613 (2004) poster session by M. Kohno Repulsive U (q) in symmetric nuclear matter is experimentally confirmed.
20
potentials (V W C (R, 0)) by quark-model G-matrix interaction I=1 I=0 I=1 total I=0 Some attraction in the surface region. FSS fss2
21
FSSfss2 - (in medium) = 30.7±6.7 mb (eikonal approx.)= 20.9±4.5 mb +3.7 -3.6 +2.5 -2.4 - p / - n =1.1 at p lab =550 MeV/c +1.4+0.7 -0.7 -0.4 Tamagawa et al. (BNL-E906) Nucl. Phys. A691 (2001) 234c Nucl. Phys. A691 (2001) 234c Yamamoto et al. Prog. Theor. Phys. 106 (2001)363 Prog. Theor. Phys. 106 (2001)363 Ahn et al. Phys. Lett. B 633 (2006) 214 More experiments are needed.
22
2006.10.13 HYP2006 Mainz Summ ary Quark-model description for the baryon-baryon interaction is very successful to reproduce many experimental data. In particular, the extension of the (3q)-(3q) RGM study for the NN and YN interactions to the strangeness S= - 2, - 3, - 4 sectors has clarified characteristic features of the B 8 B 8 interactions. The results seem to be reasonable if we consider 1) spin-flavor SU 6 symmetry 2) weak π-on effect in the strangeness sector 3) effect of the flavor symmetry breaking 3) effect of the flavor symmetry breaking We have analyzed B 8 , B 8 (3N) interactions based on the G-matrix calculations of fss2 and FSS.
23
S=0 ・ triton binding energy … fss2: +150 keV (3 body force?) S = ‐ 1 p and + p interactions are progressively known. ・ + p total and differential cross sections and polarization … fss2, FSS ・ N 1 S 0 and 3 S 1 attraction (relative strength) ( 3 H Faddeev calculation: 289 keV for fss2) ・ small s splitting in 9 Be excited states (FSS) ・ N (I=1/2 1 S 0 ), N (I=3/2 3 S 1 ) repulsion repulsive s. p. and potentials … fss2, FSS S = ‐ 2 interaction is not much attractive ! ・ interaction |V |<|V N |<|V NN | B 1 MeV (Nagara event 6 He) … fss2 ・ N in-medium total cross section (fss2, FSS) … strong isospin dependence of s.p. potential ・ N (I=0 3 S 1 ): (11) a 0 or weakly attractive (fss2, FSS) vs. ESC04(d): strongly attractive Characteristics of fss2 and FSS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.