Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 連續系統與 離散系統之比較 指導教授 : 陳正宗 終身特聘教授 報告 : 吳建鋒 日期 :2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五.

Similar presentations


Presentation on theme: "1 連續系統與 離散系統之比較 指導教授 : 陳正宗 終身特聘教授 報告 : 吳建鋒 日期 :2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五."— Presentation transcript:

1 1 連續系統與 離散系統之比較 指導教授 : 陳正宗 終身特聘教授 報告 : 吳建鋒 日期 :2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五

2 連續系統 ( 研一組 ) 離散系統 ( 大學組 ) 數學 (PDE) 結構動力 (ODE) 模擬 雅馨做的部份 無窮多 eigenvalue 無窮多 eigenfuntion 用 用 換算 得到 比較 得到 連續到離散.PPT 張毓玲製表

3 3 Question :  一根桿為連續系統,桿件長為L,一端固定一端自 由。[ 表單位長度之密度,EA 已知]

4 4 符號定義  : Displacement in the axial direction  : Mass per unit length  : Modulus of elasticity  : Area  : Length  : Wave number  : Mass  : Spring constant  : Eigenvalues  : Eigenvetors

5 5 一、推導控制方程式

6 6  由力平衡可得  代入  得到控制方程式 向左為正,

7 7 二、利用分離變數法 令 控制方程式可寫成 邊界條件為

8 8 三、代入邊界條件

9 9 代入邊界條件

10 10 代符號代回上式

11 11 四、 Eigenvalue & Eigenvector 得到

12 12 四、 Eigenvalue Continuous system

13 13 Eigenvetors

14 14 Discrete system (一)離散系統:分成四顆質點球,並將權重分配每段質點間距離為

15 15 又

16 16 Continuous systemDiscrete system ( 四顆質點球 ) Error 1.5707 1.55291.14% 4.7123 4.24269.97% 7.8539 5.795526.21%

17 17 (二)離散系統:分成五顆質點球,並將權重分配 算法同上,每 段質點間距離 為

18 18 Continuous systemDiscrete System ( 五顆質點球 ) Error 1.5707 1.5607229090.64% 4.7123 4.4445634215.68% 7.8539 6.65174864215.31%

19 19 五、比較係數 Eigenvalue

20 20 Eigenvetors

21 21 Continuous system


Download ppt "1 連續系統與 離散系統之比較 指導教授 : 陳正宗 終身特聘教授 報告 : 吳建鋒 日期 :2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五 2015年6月12日星期五."

Similar presentations


Ads by Google