Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jean Walrand EECS – U.C. Berkeley

Similar presentations


Presentation on theme: "Jean Walrand EECS – U.C. Berkeley"— Presentation transcript:

1 Jean Walrand EECS – U.C. Berkeley
Basic Probability Jean Walrand EECS – U.C. Berkeley

2 Outline Interpretation Probability Space Independence Bayes
Random Variable Random Variables Expectation Conditional Expectation Notes References

3 1. Interpretation

4 2. Probability Space 2.1. Finite Case

5 2. Probability Space 2.2. General Case

6 2. Probability Space

7 3. Independence Each element has p = 1/4 A B C

8 4. Bayes’ Rule B1 B2 A p1 p2 q1 q2

9 4. Bayes’ Rule Example: H0 H1 A = {X > 0.8} p0 p1 q0 q1

10 5. Random Variable x 1

11 5. Random Variable 0.5 1 0.3 x FX(x) 0.21 0.31 0.65 0.45

12 5. Random Variable Slope = a fX = 1 a 1 fY = 1/a

13 5. Random Variable Other examples: Bernoulli Binomial Geometric
Poisson Uniform Exponential Gaussian

14 6. Random Variables

15 6. Random Variables Example 1 w 1 Uniform in triangle X(w) Y(w)

16 6. Random Variables Example 2 g(.) y + H(x)dx x + dx y x
Scaling by |H(x)|

17 7. Expectation 0.5 1 0.3 x FX(x) 0.21 0.31 0.65 0.45

18 7. Expectation Example:

19 8. Conditional Expectation

20 8. Conditional Expectation

21 9. Notes Dependence ≠ Causality Pairwise ≠ Mutual Independence
Random variable = (deterministic) function Random vector = collection of RVs Joint pdf is more than marginals E[X|Y] exists even if cond. density does not Most functions are Borel-measurable Easy to find X(w) that is not a RV Importance of prior in Bayes’ Rule. (Are you Bayesian?) Don’t be confused by mixed RVs

22 10. Reference Probability and Random Processes


Download ppt "Jean Walrand EECS – U.C. Berkeley"

Similar presentations


Ads by Google