Download presentation
1
Jean Walrand EECS – U.C. Berkeley
Basic Probability Jean Walrand EECS – U.C. Berkeley
2
Outline Interpretation Probability Space Independence Bayes
Random Variable Random Variables Expectation Conditional Expectation Notes References
3
1. Interpretation
4
2. Probability Space 2.1. Finite Case
5
2. Probability Space 2.2. General Case
6
2. Probability Space
7
3. Independence Each element has p = 1/4 A B C
8
4. Bayes’ Rule B1 B2 A p1 p2 q1 q2
9
4. Bayes’ Rule Example: H0 H1 A = {X > 0.8} p0 p1 q0 q1
10
5. Random Variable x 1
11
5. Random Variable 0.5 1 0.3 x FX(x) 0.21 0.31 0.65 0.45
12
5. Random Variable Slope = a fX = 1 a 1 fY = 1/a
13
5. Random Variable Other examples: Bernoulli Binomial Geometric
Poisson Uniform Exponential Gaussian
14
6. Random Variables
15
6. Random Variables Example 1 w 1 Uniform in triangle X(w) Y(w)
16
6. Random Variables Example 2 g(.) y + H(x)dx x + dx y x
Scaling by |H(x)|
17
7. Expectation 0.5 1 0.3 x FX(x) 0.21 0.31 0.65 0.45
18
7. Expectation Example:
19
8. Conditional Expectation
20
8. Conditional Expectation
21
9. Notes Dependence ≠ Causality Pairwise ≠ Mutual Independence
Random variable = (deterministic) function Random vector = collection of RVs Joint pdf is more than marginals E[X|Y] exists even if cond. density does not Most functions are Borel-measurable Easy to find X(w) that is not a RV Importance of prior in Bayes’ Rule. (Are you Bayesian?) Don’t be confused by mixed RVs
22
10. Reference Probability and Random Processes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.