Presentation is loading. Please wait.

Presentation is loading. Please wait.

11/01/05ELEC 5970-001/6970-001 Lecture 171 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

Similar presentations


Presentation on theme: "11/01/05ELEC 5970-001/6970-001 Lecture 171 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits."— Presentation transcript:

1 11/01/05ELEC 5970-001/6970-001 Lecture 171 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Low-Power Logic Design and Parallelism Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal vagrawal@eng.auburn.edu

2 11/01/05ELEC 5970-001/6970-001 Lecture 172 State Encoding Two-bit binary counter: State sequence, 00→01→10→11→00 Six bit transitions in four clock cycles 6/4 = 1.5 transitions per clock Two-bit Gray-code counter State sequence, 00→01→11→10→00 Four bit transitions in four clock cycles 4/4 = 1.0 transition per clock Gray-code counter is more power efficient. G. K. Yeap, Practical Low Power Digital VLSI Design, Boston: Kluwer Academic Publishers (now Springer), 1998.

3 11/01/05ELEC 5970-001/6970-001 Lecture 173 Three-Bit Counters BinaryGray-code StateNo. of togglesStateNo. of toggles 000- - 0011 1 01020111 10101 10031101 10111111 11021011 11111001 0003 1

4 11/01/05ELEC 5970-001/6970-001 Lecture 174 N-Bit Counter: Toggles in Counting Cycle Binary counter: T(binary) = 2(2 N – 1) Gray-code counter: T(gray) = 2 N T(gray)/T(binary) = 2 N-1 /(2 N – 1) → 0.5 BitsT(binary)T(gray)T(gray)/T(binary) 1221.0 2640.6667 31480.5714 430160.5333 562320.5161 6126640.5079 ∞--0.5000

5 11/01/05ELEC 5970-001/6970-001 Lecture 175 Bus Encoding Example: Four bit bus 0000→1110 has three transitions. If bits of second pattern are inverted, then 0000→0001 will have only one transition. Bit-inversion encoding for N-bit bus: Number of bit transitions 0 N/2N N N/2 0 Number of bit transitions after inversion encoding

6 11/01/05ELEC 5970-001/6970-001 Lecture 176 Bus-Inversion Encoding Logic Polarity decision logic Sent data Received data Bus register Polarity bit M. Stan and W. Burleson, “Bus-Invert Coding for Low Power I/O,” IEEE Trans. VLSI Systems, vol. 3, no. 1, pp. 49-58, March 1995.

7 11/01/05ELEC 5970-001/6970-001 Lecture 177 FSM State Encoding 11 0100 0.1 0.4 0.3 0.6 0.9 0.6 01 1100 0.1 0.4 0.3 0.6 0.9 0.6 Expected number of state-bit transitions: 2(0.3+0.4) + 1(0.1+0.1) = 1.61(0.3+0.4+0.1) + 2(0.1) = 1.0 Transition probability based on PI statistics State encoding can be selected using a power-based cost function.

8 11/01/05ELEC 5970-001/6970-001 Lecture 178 FSM: Clock-Gating Moore machine: Outputs depend only on the state variables. –If a state has a self-loop in the state transition graph (STG), then clock can be stopped whenever a self-loop is to be executed. Sj Si Sk Xi/Zk Xk/Zk Xj/Zk Clock can be stopped when (Xk, Sk) combination occurs.

9 11/01/05ELEC 5970-001/6970-001 Lecture 179 Clock-Gating in Moore FSM Combinational logic Latch Clock activation logic Flip-flops PI CK PO L. Benini and G. De Micheli, Dynamic Power Management, Boston: Springer, 1998.

10 11/01/05ELEC 5970-001/6970-001 Lecture 1710 Clock-Gating in Low-Power Flip-Flop D Q D CK

11 11/01/05ELEC 5970-001/6970-001 Lecture 1711 Low-Power Datapath Architecture Lower supply voltage –This slows down circuit speed –Use parallel computing to gain the speed back Works well when threshold voltage is also lowered. About 60% reduction in power obtainable. Reference: A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Boston: Kluwer Academic Publishers (Now Springer), 1995.

12 11/01/05ELEC 5970-001/6970-001 Lecture 1712 A Reference Datapath Combinational logic Output Input Register CK Supply voltage= V ref Total capacitance switched per cycle= C ref Clock frequency= f Power consumption:P ref = C ref V ref 2 f C ref

13 11/01/05ELEC 5970-001/6970-001 Lecture 1713 A Parallel Architecture Comb. Logic Copy 1 Comb. Logic Copy 2 Comb. Logic Copy N Register N to 1 multiplexer Multiphase Clock gen. and mux control Input Output CK f f/N A copy processes every Nth input, operates at reduced voltage Supply voltage: V N ≤ V 1 = V ref N = Deg. of parallelism

14 11/01/05ELEC 5970-001/6970-001 Lecture 1714 Control Signals, N = 4 CK Phase 1 Phase 2 Phase 3 Phase 4

15 11/01/05ELEC 5970-001/6970-001 Lecture 1715 Power P N =P proc + P overhead P proc =N(C inreg +C comb )V N 2 f/N + C outreg V N 2 f =(C inreg +C comb +C outreg )V N 2 f =C ref V N 2 f P overhead =C overhead V N 2 f≈ δC ref (N – 1)V N 2 f P N = [1 + δ(N – 1)]C ref V N 2 f P N V N 2 ──= [1 + δ(N – 1)] ─── P 1 V ref 2

16 11/01/05ELEC 5970-001/6970-001 Lecture 1716 Voltage vs. Speed C L V ref C L V ref Delay of a gate, T ≈ ──── = ────────── Ik(W/L)(V ref – V t ) 2 whereI is saturation current k is a technology parameter W/L is width to length ratio of transistor V t is threshold voltage Supply voltage Normalized gate delay, T 4.0 3.0 2.0 1.0 0.0 VtVt V ref =5VV 2 =2.9V N=1 N=2 V3V3 N=3 1.2μ CMOS Voltage reduction slows down as we get closer to V t

17 11/01/05ELEC 5970-001/6970-001 Lecture 1717 Increasing Multiprocessing P N /P 1 1 2 3 4 5 6 7 8 9 10 11 12 1.0 0.8 0.6 0.4 0.2 0.0 V t =0V (extreme case) V t =0.4V V t =0.8V N 1.2μ CMOS, V ref = 5V

18 11/01/05ELEC 5970-001/6970-001 Lecture 1718 Extreme Case: V t = 0 Delay, T α 1/ V ref For N processing elements, delay = NT → V N = V ref /N P N 1 ──=[1+ δ (N – 1)] ──→1/N P 1 N 2 For negligible overhead, δ→0 P N 1 ──≈── P 1 N 2 For V t > 0, power reduction is less and there will be an optimum value of N.

19 11/01/05ELEC 5970-001/6970-001 Lecture 1719 Reduced-Power Shift Register D Q D CK(f/2) multiplexer Output Flip-flops are operated at full voltage and half the clock frequency.

20 11/01/05ELEC 5970-001/6970-001 Lecture 1720 Power Consumption of Shift Reg. P = C’V DD 2 f/n Degree of parallelism, n 1 2 4 Normalized power 1.0 0.5 0.25 0.0 Deg. Of parallelism Freq (MHz) Power (μW) 133.01535 216.5887 48.25738 16-bit shift register, 2μ CMOS C. Piguet, “Circuit and Logic Level Design,” pages 103-133 in W. Nebel and J. Mermet (ed.), Low Power Design in Deep Submicron Electronics, Boston: Kluwer Academic Publishers, 1997.

21 11/01/05ELEC 5970-001/6970-001 Lecture 1721 Multicore Processors D. Geer, “Chip Makers Turn to Multicore Processors,” Computer, vol. 38, no. 5, pp. 11-13, May 2005. A. Jerraya, H. Tenhunen and W. Wolf, “Multiprocessor Systems-on-Chips,” Computer, vol. 5, no. 7, pp. 36-40, July 2005; this special issue contains three more articles on multicore processors.

22 11/01/05ELEC 5970-001/6970-001 Lecture 1722 Multicore Processors 200020042008 Performance based on SPECint2000 and SPECfp2000 benchmarks Multicore Single core Computer, May 2005, p. 12


Download ppt "11/01/05ELEC 5970-001/6970-001 Lecture 171 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits."

Similar presentations


Ads by Google