Download presentation
Presentation is loading. Please wait.
1
Lines in Space
2
z x y P Q Equation of a Line
3
z x y r0r0 d P Q
4
z x y r0r0 d r P Q Q’ Equation of a Line
5
z x y r0r0 d r P Q Q’ P(x 0,y 0,z 0 ) Q(x 1,y 1,z 1 ) Q’(x,y,z) d=d 1 i+d 2 j+d 3 k r 0 =x 0 i+y 0 j+z 0 k =(x 1 -x 0 )i+(y 1 -y 0 )j+(z 1 -z 0 )k Equation of a Line
6
z x y r0r0 d r P Q Q’ P(x 0,y 0,z 0 ) Q(x 1,y 1,z 1 ) Q’(x,y,z) Vector Parameterization d=d 1 i+d 2 j+d 3 k r 0 =x 0 i+y 0 j+z 0 k =(x 1 -x 0 )i+(y 1 -y 0 )j+(z 1 -z 0 )k Equation of a Line
7
z x y r0r0 d r P Q Q’ P(x 0,y 0,z 0 ) Q(x 1,y 1,z 1 ) Q’(x,y,z) Vector Parameterization d=d 1 i+d 2 j+d 3 k r 0 =x 0 i+y 0 j+z 0 k =(x 1 -x 0 )i+(y 1 -y 0 )j+(z 1 -z 0 )k Equation of a Line
8
z x y r0r0 d r P Q Q’ P(x 0,y 0,z 0 ) Q(x 1,y 1,z 1 ) Q’(x,y,z) Vector Parameterization d=d 1 i+d 2 j+d 3 k r 0 =x 0 i+y 0 j+z 0 k =(x 1 -x 0 )i+(y 1 -y 0 )j+(z 1 -z 0 )k Equation of a Line
9
z x y r0r0 d r P Q Q’ P(x 0,y 0,z 0 ) Q(x 1,y 1,z 1 ) Q’(x,y,z) Scalar Parametric Equations Vector Parameterization d=d 1 i+d 2 j+d 3 k r 0 =x 0 i+y 0 j+z 0 k =(x 1 -x 0 )i+(y 1 -y 0 )j+(z 1 -z 0 )k Equation of a Line
10
Representations of a Line
11
Examples
12
Direction Cosines
13
Example
16
Examples Find the equation of of the line through the origin and perpendicular to the plane pictured. Find the equation of the plane perpendicular to x(t)=4-2t, y(t)= -1+t, z(t)=3 z x y 3 5 4
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.