Download presentation
Presentation is loading. Please wait.
1
Electromagnetic Probes of the Medium (Status of the Field) Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week 8) on “Quantifying the Properties of Hot QCD Matter” INT (Seattle), 12.-16.07.10
2
1.) Introduction: EM Probes + QCD Phase Diagram Electromag. Spectral Function - √s < 2 GeV : non-perturbative - √s ≥ 2 GeV : pertubative (dual) Phase structure tied to in-medium spectral functions - expect: hadron gas → QGP - realization of transition? Thermal dilepton emission rate ( EM >> R nucleus ) thermal (M→0) → temperature, EM conductivity + susceptibility √s=M Im Π em (M,q; B,T)
3
1.) Introduction 2.) Chiral Symmetry Spontaneous Chiral Symmetry Breaking Chiral Partners, Sum Rules 3.) Light Vector Mesons in Medium Lagrangian + Constraints Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology Nuclear Photoproduction High-Energy Heavy-Ion Collisions 5.) Conclusions Outline
4
2.) Chiral Symmetry Breaking + Hadron Spectrum “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] Quark Level: Const. Mass Observables: Hadron Spectrum M q * ~ ‹0|qq|0› chiral breaking: |q 2 | ≤ 1 GeV 2 - Condensates fill QCD vacuum: energy gap massless Goldstone mode “chiral partners” split (½ GeV) J P =0 ± 1 ± 1/2 ± 3/2 ± (1700) N (1520) (1232) M [GeV]
5
spectral distributions! 2.3 Q 2 -Dependence of Chiral Breaking Axial-/Vector Mesons pQCD cont. F 2 -Structure Function ( spacelike) JLAB Data ≈ x average → Quark-Hadron Duality lower onset-Q 2 in nuclei? [Niculescu et al ’00] p d Weinberg Sum Rule(s)
6
2.4 Sum Rules and Order Parameters [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93] QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] Promising synergy of lQCD and effective models Weinberg-SRs: moments Vector Axialvector
7
1.) Introduction 2.) Chiral Symmetry Spontaneous Chiral Symmetry Breaking Chiral Partners, Sum Rules 3.) Light Vector Mesons in Medium Lagrangian + Constraints Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology Nuclear Photoproduction High-Energy Heavy-Ion Collisions 5.) Conclusions Outline
8
D (M,q; B,T) = [M 2 - m 2 - - B - M ] -1 [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Oset et al, …] Pion Cloud > > R= , N(1520), a 1, K 1... h=N, , K … = -Hadron Scattering = + [Haglin, Friman et al, RR et al, Post et al, …] constrain effective vertices: R→ h, scattering data ( N→ N, N/A) Vacuum: chiral Lagrangian + → P-wave phase shift, el.-mag. formfactor Hadronic Matter: effective Lagrangian for interactions with heat bath In-Medium -Propagator 3.2 -Meson in Vacuum and Hot/Dense Matter
9
3.3 Constraints from Nuclear Photo-Absorption -absorption cross section in-medium –spectral function NANA -ex [Urban,Buballa, RR+Wambach ’98] Nucleon Nuclei melting of 2.+3. resonances quantitative determination of interaction vertex parameters
10
3.4 Spectral Function in Nuclear Matter In-med. -cloud + N→B* resonances (low-density approx.) In-med -cloud + N → N(1520) Constraints: N, A N → N PWA strong broadening + small upward mass-shift empirical constraints important quantitatively N=0N=0 N=0N=0 N =0.5 0 [Urban et al ’98] [Post et al ’02] [Cabrera et al ’02]
11
3.5 Spectral Function in Heavy-Ion Collisions -meson “melts” in hot /dense matter medium effects dominated by baryons B / 0 0 0.1 0.7 2.6 Hot+Dense Matter [RR+Gale ’99] Hot Meson Gas [RR+Wambach ’99]
12
1.) Introduction 2.) Resonances + Chiral Symmetry Spontaneous Chiral Symmetry Breaking Chiral Partners 3.) Light Vector Mesons in Medium Lagrangian + Constraints Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology Nuclear Photoproduction High-Energy Heavy-Ion Collisions 5.) Conclusions Outline
13
4.1 Nuclear Photoproduction: Meson in Cold Matter + A → e + e X [CLAS+GiBUU ‘08] E ≈1.5-3 GeV e+ee+e extracted “in-med” -width ≈ 220 MeV Microscopic Approach: Fe - Ti N product. amplitude in-med. spectral fct. + M [GeV] [Riek et al ’08, ‘10] full calculation fix density 0.4 0 -broadening reduced at high 3-momentum; need low momentum cut!
14
4.2 Thermal Dilepton Emission Rate: e+ e-e+ e- Im Π em (M,q; B,T) Im em ~ [Im D + Im D /10 + Im D /5] M ≤ 1 GeV: non-perturbative M > 1.5 GeV: perturbative Im em ~ N c ∑(e q ) 2 √s=M e+e-e+e- e+e-e+e- qqqq - ee→had / ee→ ~ Im em (M) “Hadronic Spectrometer” (T ≤ T c ) “QGP Thermometer” (T > T c )
15
4.2.2 Dilepton Rates: Hadronic vs. QGP dR ee /dM 2 ~ ∫d 3 q f B (q 0 ;T) Im em Hadronic and QGP rates tend to “degenerate” toward ~T c Quark-Hadron Duality at all M ?! ( degenerate axialvector SF!) [qq→ee] - [HTL] F 2 -Structure Function p d JLAB Data [RR,Wambach et al ’99]
16
4.2.3 Dileptons in Heavy-Ion Collisions: Spectrometer thermal radiation dominant invariant-mass spectrum directly reflects thermal emission rate! + Spectra at CERN-SPS In-In(158AGeV) [NA60 ‘09] M [GeV] Thermal Emission Rate Evolve rates over fireball expansion: [van Hees+RR ’08]
17
“4 “ states dominate free EM correlator above M ≈ 1.1GeV lower estimate: use vacuum 4 correlator more realistic: O (T 2 ) medium effect → “chiral V-A mixing”: with 4.2.4 Intermediate-Mass Region [Eletsky+Ioffe ‘90] 44 22 55 33 [van Hees+RR ‘06]
18
4.2.4.2 Intermediate-Mass Dileptons: Thermometer QGP or Hadron Gas (HG) radition? vary critical temperature T c in fireball evolution partition QGP vs. HG depends on T c (spectral shape robust: dilepton rate “dual” around T c ! ) Initial temperature T i ~ 190-220 MeV at CERN-SPS green: T c =190MeV red: T c =175MeV (default) blue: T c =160MeV qq → → (e.g. a 1 → ) -
19
4.2.5 Dimuon p t -Spectra and Slopes: Barometer modify fireball evolution: e.g. a ┴ = 0.085/fm → 0.1/fm both large and small T c compatible with excess dilepton slopes pions: T ch =175MeV a ┴ =0.085/fm pions: T ch =160MeV a ┴ =0.1/fm
20
M [GeV] 4.2.6 Conclusions from Dilepton “Excess” Spectra thermal source (T~120-200MeV) M<1GeV: in-medium meson - no significant mass shift - avg. (T~150MeV) ~ 350-400 MeV (T~T c ) ≈ 600 MeV → m - driven by baryons M>1GeV: radiation around T c fireball lifetime “measurement”: FB ~ (6.5±1) fm/c (semicentral In-In) [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] currently fails at RHIC
21
4.2.6 Origin of the Low-Mass Excess in PHENIX? - small T eff slope - why not in semi-central? - generic space-time argument: maximal emission around T max ≈ M / 5.5 (for Im em =const) Low mass (M<1GeV): T max < 200MeV Soft QGP Radiation? - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - therm + DCC → e + e ↔ M~0.3GeV, small p t Disoriented Chiral Condensate (DCC)? [Bjorken et al ’93, Rajagopal+Wilczek ’93] [Z.Huang+X.N.Wang ‘96]
22
4.3 Axialvector in Medium: Dynamical a 1 (1260) + +... = Vacuum: a 1 resonance In Medium: + +... in-medium + propagators broadening of - scattering amplitude [Cabrera et al. ’10]
23
5.) Conclusions EM spectral function ↔ excitations of QCD vacuum - ideal tool to probe hot/dense matter Effective hadronic Lagrangian + many-body theory: - strong broadening in (baryonic) medium, suppresed at large momentum (CLAS!) Dileptons in heavy-ion collisions: - spectro-/thermo-/baro-meter (CERES, NA50,NA60!) - corroborate melting of toward expected T c = 160-190 MeV → quark-hadron duality?! hadron liquid?! Sum rules + axialvector spectral function to tighten relations to (partial) chiral restoration Future experiments at RHIC-2, FAIR +LHC
24
3.2.5 EM Probes in Central Pb-Au/Pb at SPS consistency of virtual+real photons (same em ) very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06] Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07]
25
3.5.3 Composition of Mass Spectra in q t -Bins high q t ≥ 1.5GeV: - medium effects reduced - non-thermal sources take over low q t high q t intermed. q t
26
3.5.2 Rho, Omega + Phi Freezeout from p t -Spectra sequential freezeout → → consistent with mass spectra freezeout = fireball freezeout adjust and freezeout contribution to fit p t -spectra
27
5.2.5 NA60 Dimuons: p t -Slopes in-medium radiation “harder” than hadrons at freezeout?! (thermal radiation softer by Lorentz-1/ smaller T ch helps (larger T fo ) non-thermal sources (DY, …)? additional transverse acceleration? hadron spectra (pions)? T ch =175MeV T ch =160MeV a ┴ =0.1/fm T ch =160MeV a ┴ =0.085/fm
28
3.3 “Non-Thermal Dilepton Sources → relevant at M, q t ≥ 1.5 GeV (?) primordial qq annihilation (Drell-Yan): NN → e + e X mesons at thermal freeze-out (“blast-wave”): - extra Lorentz- factor relative to thermal radiation - q t -spectra + yield fixed by fireball model primordial (“hard”) mesons: - schematic jet-quenching with abs fit to pions - late decays: , → e + e , DD → e + e X , J/ →e + e , … _ f.o. + prim.
29
3.2.3 NA60 Excess Spectra vs. Theory Thermal source does very well Low-mass enhancement very sensitive to medium effects Intermediate-mass: total agrees, decomposition varies [CERN Courier Nov. 2009]
30
2.2 Chiral + Resonance Scheme N + N(1535) - a 1 N(1520) - N(1900) + (1700) - (?) (1920) + SS PP SS SS SS SS PP SS SS (a 1 ) S add S-wave pion → chiral partner P-wave pion → quark spin-flip importance of baryon spectroscopy
31
3.1 Axial/Vector Mesons in Vacuum Introduce a 1 as gauge bosons into free + +a 1 Lagrangian EM formfactor scattering phase shift |F | 2 -propagator:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.