Presentation is loading. Please wait.

Presentation is loading. Please wait.

CCSB364 Data Structures & Algorithms Pointer & Linked List.

Similar presentations


Presentation on theme: "CCSB364 Data Structures & Algorithms Pointer & Linked List."— Presentation transcript:

1 CCSB364 Data Structures & Algorithms Pointer & Linked List

2 Introduction  If we have a set of data, we can keep it in an array. But the problem with array is, the size is fixed Overflow Size can’t be extended Wasted if unused  To overcome this – we use linked list.  To understand linked list, we must first understand the fundamentals – the pointer.

3 Pointer ?  Variable concept Declaring a variable Memory allocation  Pointer ? A variable which give location of other variable.  Linked List? Put a pointer in a structure, giving the next location of the next structure.  Static variable vs. Dynamic variable Static variable – declared and named in program Dynamic – created during program execution.

4 Understanding Pointers  Declare a pointer int *aPtr; int *aPtr = null;  Assigning a pointer aPtr = &aVar;  Read the pointer value printf(“%d “, *aPtr);

5 Exercise 1. Declare an integer variable a and b 2. Declare pointer variables aPtr and bPtr 3. Assign a to has a value of 100, and b to has a value of 200 4. Assign aPtr to points to a 5. Assign bPtr to points to aPtr 6. By using bPtr, change value of a to be the same as b.

6 Linked List 123 AC  a pointer in a structure, giving the next location of the next structure.

7 Linked List - Declaration  Linked List consist of structure  Llist – is a pointer, pointing to a linked list structure  Next is a pointer in the linked list structure Temp Item Next Llist NULL

8 Structure Declaration typedef char item; typedef struct node{ item data; struct node *next; } Node;

9 Declaring the linked list Item Next Llist NULL  To declare a linked list Node *Llist; //Llist –pointer pointing to a node type

10 Linked List Operation  Create a Nod  Verify for an empty list  Traversal along the linked nodes  Insert new nodes  Delete a node

11 Creating New Node Node *newnode (item c) { Node *n; n = (Node *) malloc (sizeof (Node)); if ( n != NULL) { n-> data = c; n->next = NULL; } return n; }

12 Insert New Node at the begining Item Next Temp NULL Item Next Llist NULL Item Next Temp X Item Next Llist NULL

13 Inserting node in the middle Item Next Temp NULL Item Next Llist NULL Item Next CurrPtr Item Next Temp Item Next Llist NULL Item Next CurrPtr

14 Insert New Node - implementation void InsertNode( Node *Llist, Node *temp, Node *CurrPtr){ { if (CurrPtr ==NULL) { temp->next = Llist; Llist = temp; } else { temp->next = CurrPtr->next; CurrPtr –>next = temp; } }

15 Traverse The List void Traversal ( Node *Llist) { Node *Temp; Temp = Llist; while ( Temp != NULL) { printf (“data = %c", Temp->data); Temp = Temp-> next; } } Item Next Llist NULL Item Next Llist NULL Temp

16 Deleting first node Temp Item Next Llist NULL Temp Item Next Llist NULL X

17 Deleting middle or last node Temp Item Next Llist NULL Item Next CurrPtr Temp Item Next Llist NULL Item Next CurrPtr

18 Deleting Node - implementation void DeleteNode( Node *Llist, Node *CurrPtr) { Node *temp; if (CurrPtr ==NULL) { temp = Llist; Llist = temp->next; } else { temp = CurrPtr->next; CurrPtr –>next = temp->next; } free(temp) }

19 Type of Linked List  Simple one-way linked list L x1 x2 x3 x4

20 Type of Linked List  Circular Linked List Formed by having the link in the l ast node of a one way linked list point back to the first node. L x1 x2 x3 x4

21 Type of Linked List  Two Way Linked List Formed from nodes that have pointers to both their left and right neighbours in the list L x3 x1 x2

22 Type of Linked List  Linked List with Header Node Header points to the first node  As a marker / stopping place  Ease the deletion process of a node L x1 x2 x3 x4 L Header Node

23 Linked List Using Array  Older and widely used computer language (COBOL, Fortran, BASIC) do not provide facilities for dynamic storage allocation (pointers)  Workspace (several arrays hold different part of a logical record) is used for programming languages which do not support records.

24 Linked List Using Array  Implementation of linked list using array is preferred if: Number of entries is known in advance Few insertions or deletions Data are sometimes best treated as a linked list and other times as a contiguous

25 Linked List Using Array typedef char ListEntry; typedef int ListIndex; typedef struct listnode{ ListEntry entry; ListIndex next; } ListNode; typedef int Position; typedef struct list{ ListIndex head; int count; }List; ListIndex avail,lastused; ListNode workspace[10]

26 Array Linked List – New Node ListIndex NewNode (void) { ListIndex newindex = -1; if(avail != -1) { newindex = avail; avail = workspace[avail].next; workspace[newindex].next = 0; } else if (lastused < MAXLIST - 1) { newindex = ++lastused; workspace[newindex].next = 0; } else printf (“ Error Overflow : workspace for linked list is full”); return newindex; }

27 Array Linked List - Insert void InsertList ( Position p, ListEntry x, List *list) { ListIndex newindex, previous; if ( p list->count) printf(“ Error inserting into a nonexistent position”); else { newindex = NewNode(); workspace[newindex].entry = x; if (p == 0) { workspace[newindex].next = list->head; list->head = newindex; } else { SetPosition(p-1, &previous, list); workspace[newindex].next=workspace[previous].next; workspace[previous].next = newindex; } list->count ++; } }

28 Array Linked List - Dispose void DisposeNode (ListIndex oldindex, List *list) { ListIndex previous; if( oldindex == -1) printf(“Error : Disposing a nonexistent node”); else { if ( oldindex == list-> head) list->head = workspace[oldindex].next; else { SetPosition(CurrentPosition(oldindex,list)– 1, &previous, list); workspace[previous].next=workspace[oldindex].next; } workspace[oldindex].next = avail; avail = oldindex; } }

29 Array Linked List - Traverse void TraverseList (List *list) { ListIndex current; for (current= list->head ; current != -1; workspace[current].next) printf(”data of workspace[%d].entry = %c”, current, workspace[current].entry); }

30 Class Exercise  Write a complete program to create, insert and delete a linked list. Each list will consist of ID (an integer) and Grade (a character)  Guides Declare linked list structure Writes all the ADT funtions (newNode, InsertNode, DeleteNode, TraverseNode) In main program:  Create new node  Traverse the list  Create another node  Insert into the existing list  Traverse list  Delete the last node  Traverse list  Insert new node  Traverst list


Download ppt "CCSB364 Data Structures & Algorithms Pointer & Linked List."

Similar presentations


Ads by Google