Download presentation
Presentation is loading. Please wait.
1
Approximate quadratic-linear optimization problem Based on Pierpaolo Benigno and Michael Woodford
2
The Quadratic Approximation to the Utility Function Consider the problem
3
The first-order condition
4
The second-order approximation to the utility function
5
The second-order approximation to the constraint
6
Substitute the second- order approximation to the constraint into the linear term of the second-order approximation to the utility function, using the FOC, yields a quadratic objective function
7
The approximate optimization problem Subject to:
8
Which is supposed to be(?) a first order approximation of
9
A Linear-Quadratic Approximate Problem Begin by computing a Taylor-series approximation to the welfare measure, expanding around the steady state. As a second-order (logarithmic) approximation, BW get:
10
The Quadratic Approximation to the Utility Function Consider the problem
11
The first-order condition
12
The second-order approximation to the utility function
13
The second-order approximation to the constraint
14
Approximate optimization Substitute the second-order approximation to the constraint into the linear term of the second-order approximation to the linear term of the second-order approximation of the utility function, using the first- order conditions, yields a quadratic objective function. The approximate optimization is to maximize the quadratic objective function, subject to the first-order approximation of the constraint. The first-order condition is equal to the first order approximation of the FOC of the original problem.
15
The Micro-based Neo-Keynesian Quadratic-linear problem Based on Pierpaolo Benigno and Michael Woodford
16
The Micro-based Quadratic Loss Function
17
Welfare measure expressed as a function of equilibrium production Demand of differentiated product is a function of relative prices
18
The Deterministic (distorted) Steady State Maximize with respect to Subject to constraints on
19
BW show that an alternative way of dealing with this problem is to use the a second- order approximation to the aggregate supply relation to eliminate the linear terms in the quadratic welfare function.
20
A Linear-Quadratic Approximate Problem Begin by computing a Taylor-series approximation to the welfare measure, expanding around the steady state. As a second-order (logarithmic) approximation, BW get:
21
There is a non-zero linear term in the approximate welfare measure, unless As in the case of no price distortions in the steady state (subsidies to producers that negate the monopolistic power). This means that we cannot expect to evaluate this expression to the second order using only the approximate solution for the path of aggregate output that is accurate only to the first order. Thus we cannot determine optimal policy, even up to first order, using this approximate objective together with the approximations to the structural equations that are accurate only to first order.
22
Welfare measure expressed as a function of equilibrium production Demand of differentiated product is a function of relative prices
23
The Micro-based Quadratic Loss Function of Benigno and Woodford
24
There is a non-zero linear term in the approximate welfare measure, unless As in the case of no price distortions in the steady state (subsidies to producers that negate the monopolistic power). This means that we cannot expect to evaluate this expression to the second order using only the approximate solution for the path of aggregate output that is accurate only to the first order. Thus we cannot determine optimal policy, even up to first order, using this approximate objective together with the approximations to the structural equations that are accurate only to first order.
25
The Deterministic (distorted) Steady State Maximize with respect to Subject to constraints on
26
BW show that an alternative way of dealing with this problem is to use the a second- order approximation to the aggregate supply relation to eliminate the linear terms in the quadratic welfare function.
27
MICROFOUNDED CAGAN- SARGENT PRICE LEVEL DETERMINATION UNDER MONETARY TARGETING
28
FLEX-PRICE, COMPLETE-MARKETS MODEL MICROFOUNDED CAGAN-SARGENT PRICE LEVEL DETERMINATION UNDER MONETARY TARGETING
29
Complete Markets = price kernel Value of portfolio with payoff D
30
Interest coefficient for riskless asset Riskless Portfolio
31
Budget Constraint Where T is the transfer payments based on the seignorage profits of the central bank, distributed in a lump sum to the representative consumer
32
No Ponzi Games: For all states in t+1 For all t, to prevent infinite c The equivalent terminal condition
33
Lagrangian
34
Transversality condition: Flow budget constraint:
35
Market Equilibrium Market solution for the transfers T
36
Monetary Targeting: BC chooses a path for M Fiscal policy assumed to be: Equilibrium is S.t. Euler-intertemporal condition condition FOC-itratemporal condition TVC Constraint For given
37
We study equilibrium around a zero-shock steady state:
38
Derive the LM Curve From the FOC: At the steady state:
39
Separable utility : Define: The “hat” variables are proportional deviations from the steady state variables.
40
Similar to Cagan’s semi-elasticity of money demand
41
We log-linearize around zero inflation define Log-linearize the Euler Equation and transform it to a Fisher equation: Elasticity of intertemporal substitution g is the “twist” in MRS between m and c
42
Add the identity We look for solution given exogenous shocks
43
Solution of the system This is a linear first-order stochastic difference equation,where, Exogenous disturbance (composite of all shocks):
44
given There exists a forward solution: From which we can get a unique equilibrium value for the price level: This is similar to the Cagan-Sargent-wallace formula for the price level, but with the exception that the Lucas Critique is taken care of and it allows welfare analysis.
45
I. Interest Rate Targeting based on exogenous shocks Choose the path for i; specify fiscal policy which targets D: Total end of period public sector liabilities. Monetary policy affects the breakdown of D between M and B: No multi-period bonds Beginning of period value of outsranding bonds End of period, one-period risk-less bonds
46
Steady state (around fix )
47
Is unique Can uniquely be determined! PRICE LEVEL IS INDETERMINATE: Real balances are unique Future expected inflation is unique But, neither
48
To see the indeterminancy, let “*” denote solution value: v is a shock, uncorrelated with (sunspot), the new triple is also a solution, thus: Price level is indeterminate under the interest rule!
49
II. Wicksellian Rules : interest rate is a function of endogenous variables (feedback rule) V=control error of CB Fiscal Policy Exogenous Endogenous
50
Steady State: Log-linearize:
51
We can find two processes Add the identity
52
1), 2) and 3) yield: P is not correlated to the path of M: money demand shocks affect M, but do not affect P; the LM is not used in the derivation of the solution to P.
53
FEATURES: Forward looking Price is not a function of i; rather, a function of the feedback rule and the target suppose
54
Additionally: If Price level instability can be reduced by raising, an automatic response.
55
Note, also that Big Small, reduces the need for accurate observation of, almost complete peg of interest rate
56
The path of the money supply: By using LM, we can still express But we must examine existence of a well-defined demand for money. There’s possibly liquidity trap
57
III. TAYLOR (feedback) RULE Steady state Assume:
58
Taylor principle: Is predetermined
59
Transitory fluctuations in Create transitory fluctuations in Permanent shifts in the price level P.
60
Optimizing models with nominal rigidities Chapter 3
63
First Order Conditions:
64
Firm’s Optimization: Nominal Real
65
Natural Level of Output
66
Log-linearization of real mc: Partial-equilibrium relationship?
67
‘where Elasticity of wage demands, wrt to output holding marginal utility of income constant Elasticity of marginal product of labor wrt output
68
ONE-PERIOD NOMINAL RIDIGITY Same as before, except for Y need not be equal to the natural y
69
C t = consumption aggregate = = gross rate of increase in the Dixit-Stiglitz price index P t A Neo-Wicksellian Framework THE IS:
70
Equilibrium condition: A log-linear approximation around a deterministic steady state yields the IS schedule: g=crowding out term due to fiscal shock
71
Equivalent to the fiscal shock Effect on fiscal shock on C
72
New Keynesian Phillips Curve: Taylor Rule: Inflation target Deviation of natural output due to supply shock Demand determined output deviations
73
Output gap: IS-curve involves an exogenous disturbance term: 3-EQUATION EQUILIBRIUM SYSTEM: Proportion of firm that prefix prices
74
INTEREST RULE AND PRICE STABILITY THE NATURAL RATE OF INTEREST
75
Percentage deviation of the natural rate of interest from its steady-state value
76
Inflation targeting at low, positive, inflation Composite disturbances
78
Evolution of money supply: The only exogenous variables in the system are: = the natural interest rate =nominal rate consistent with inflation target
79
FLEX-PRICE, COMPLETE-MARKETS MODEL MICROFOUNDED CAGAN-SARGENT PRICE LEVEL DETERMINATION UNDER MONETARY TARGETING
80
Complete Markets = price kernel Value of portfolio with payoff D
81
Interest coefficient for riskless asset Riskless Portfolio
82
Budget Constraint Where T is the transfer payments based on the seignorage profits of the central bank, distributed in a lump sum to the representative consumer
83
No Ponzi Games: For all states in t+1 For all t, to prevent infinite c The equivalent terminal condition
84
Lagrangian
85
Transversality condition: Flow budget constraint:
86
Market Equilibrium Market solution for the transfers T
87
Monetary Targeting: BC chooses a path for M Fiscal policy assumed to be: Equilibrium is S.t. Euler-intertemporal condition condition FOC-itratemporal condition TVC Constraint For given
88
We study equilibrium around a zero-shock steady state:
89
Derive the LM Curve From the FOC: At the steady state:
90
Separable utility : Define: The “hat” variables are proportional deviations from the steady state variables.
91
Similar to Cagan’s semi-elasticity of money demand
92
We log-linearize around zero inflation define Log-linearize the Euler Equation and transform it to a Fisher equation: Elasticity of intertemporal substitution g is the “twist” in MRS between m and c
93
Add the identity We look for solution given exogenous shocks
94
Solution of the system This is a linear first-order stochastic difference equation,where, Exogenous disturbance (composite of all shocks):
95
given There exists a forward solution: From which we can get a unique equilibrium value for the price level: This is similar to the Cagan-Sargent-wallace formula for the price level, but with the exception that the Lucas Critique is taken care of and it allows welfare analysis.
96
I. Interest Rate Targeting based on exogenous shocks Choose the path for i; specify fiscal policy which targets D: Total end of period public sector liabilities. Monetary policy affects the breakdown of D between M and B: No multi-period bonds Beginning of period value of outsranding bonds End of period, one-period risk-less bonds
97
Steady state (around fix )
98
Is unique Can uniquely be determined! PRICE LEVEL IS INDETERMINATE: Real balances are unique Future expected inflation is unique But, neither
99
To see the indeterminancy, let “*” denote solution value: v is a shock, uncorrelated with (sunspot), the new triple is also a solution, thus: Price level is indeterminate under the interest rule!
100
II. Wicksellian Rules : interest rate is a function of endogenous variables (feedback rule) V=control error of CB Fiscal Policy Exogenous Endogenous
101
Steady State: Log-linearize:
102
We can find two processes Add the identity
103
1), 2) and 3) yield: P is not correlated to the path of M: money demand shocks affect M, but do not affect P; the LM is not used in the derivation of the solution to P.
104
FEATURES: Forward looking Price is not a function of i; rather, a function of the feedback rule and the target suppose
105
Additionally: If Price level instability can be reduced by raising, an automatic response.
106
Note, also that Big Small, reduces the need for accurate observation of, almost complete peg of interest rate
107
The path of the money supply: By using LM, we can still express But we must examine existence of a well-defined demand for money. There’s possibly liquidity trap
108
III. TAYLOR (feedback) RULE Steady state Assume:
109
Taylor principle: Is predetermined
110
Transitory fluctuations in Create transitory fluctuations in Permanent shifts in the price level P.
111
Optimizing models with nominal rigidities Chapter 3
114
First Order Conditions:
115
Firm’s Optimization: Nominal Real
116
Natural Level of Output
117
Log-linearization of real mc: Partial-equilibrium relationship?
118
‘where Elasticity of wage demands, wrt to output holding marginal utility of income constant Elasticity of marginal product of labor wrt output
119
ONE-PERIOD NOMINAL RIDIGITY Same as before, except for Y need not be equal to the natural y
120
C t = consumption aggregate = = gross rate of increase in the Dixit-Stiglitz price index P t A Neo-Wicksellian Framework THE IS:
121
Equilibrium condition: A log-linear approximation around a deterministic steady state yields the IS schedule: g=crowding out term due to fiscal shock
122
Equivalent to the fiscal shock Effect on fiscal shock on C
123
New Keynesian Phillips Curve: Taylor Rule: Inflation target Deviation of natural output due to supply shock Demand determined output deviations
124
Output gap: IS-curve involves an exogenous disturbance term: 3-EQUATION EQUILIBRIUM SYSTEM: Proportion of firm that prefix prices
125
INTEREST RULE AND PRICE STABILITY THE NATURAL RATE OF INTEREST
126
Percentage deviation of the natural rate of interest from its steady-state value
127
Inflation targeting at low, positive, inflation Composite disturbances
129
Evolution of money supply: The only exogenous variables in the system are: = the natural interest rate =nominal rate consistent with inflation target
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.