Download presentation
Presentation is loading. Please wait.
1
Transport Layer3-1 Congestion Control
2
Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle” r different from flow control! r manifestations: m lost packets (buffer overflow at routers) m long delays (queueing in router buffers) r a top-10 problem!
3
Transport Layer3-3 Scenario 1: Queuing Delays r two senders, two receivers r one router, infinite buffers r no retransmission r large delays when congested r maximum achievable throughput unlimited shared output link buffers Host A in : original data Host B out
4
Transport Layer3-4 Scenario 2: Retransmits r one router, finite buffers r sender retransmission of lost packet finite shared output link buffers Host A in : original data Host B out ' in : original data, plus retransmitted data
5
Transport Layer3-5 Scenario 3: Congestion Near Receiver r four senders r multihop paths r timeout/retransmit in Q: what happens as and increase ? in finite shared output link buffers Host A in : original data Host B out ' in : original data, plus retransmitted data
6
Transport Layer3-6 Approaches towards congestion control End-end congestion control: r no explicit feedback from network r congestion inferred from end-system observed loss, delay r approach taken by TCP Network-assisted congestion control: r routers provide feedback to end systems m single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) m explicit rate sender should send at Two broad approaches towards congestion control:
7
Transport Layer3-7 TCP Congestion Control r end-end control (no network assistance) r sender limits transmission: LastByteSent-LastByteAcked CongWin r Roughly, CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? r loss event = timeout or 3 duplicate acks TCP sender reduces rate ( CongWin ) after loss event three mechanisms: m AIMD m slow start m conservative after timeout events rate = CongWin RTT Bytes/sec
8
Transport Layer3-8 TCP AIMD multiplicative decrease: cut CongWin in half after loss event additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing Long-lived TCP connection
9
Transport Layer3-9 TCP Slow Start When connection begins, CongWin = 1 MSS m Example: MSS = 500 bytes & RTT = 200 msec m initial rate = 20 kbps r available bandwidth may be >> MSS/RTT m desirable to quickly ramp up to respectable rate r When connection begins, increase rate exponentially fast until first loss event
10
Transport Layer3-10 TCP Slow Start (more) r When connection begins, increase rate exponentially until first loss event: double CongWin every RTT done by incrementing CongWin for every ACK received r Summary: initial rate is slow but ramps up exponentially fast Host A one segment RTT Host B time two segments four segments
11
Transport Layer3-11 Refinement r After 3 dup ACKs: CongWin is cut in half m window then grows linearly r But after timeout event: CongWin instead set to 1 MSS; m window then grows exponentially m to a threshold, then grows linearly 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” Philosophy:
12
Transport Layer3-12 Refinement (more) Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: r Variable Threshold r At loss event, Threshold is set to 1/2 of CongWin just before loss event
13
Transport Layer3-13 Summary: TCP Congestion Control When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly. When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.
14
Transport Layer3-14 TCP sender congestion control EventStateTCP Sender ActionCommentary ACK receipt for previously unacked data Slow Start (SS) CongWin = CongWin + MSS, If (CongWin > Threshold) set state to “Congestion Avoidance” Resulting in a doubling of CongWin every RTT ACK receipt for previously unacked data Congestion Avoidance (CA) CongWin = CongWin+MSS * (MSS/CongWin) Additive increase, resulting in increase of CongWin by 1 MSS every RTT Loss event detected by triple duplicate ACK SS or CAThreshold = CongWin/2, CongWin = Threshold, Set state to “Congestion Avoidance” Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS. TimeoutSS or CAThreshold = CongWin/2, CongWin = 1 MSS, Set state to “Slow Start” Enter slow start Duplicate ACK SS or CAIncrement duplicate ACK count for segment being acked CongWin and Threshold not changed
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.