Download presentation
Presentation is loading. Please wait.
1
Triangulation No of elements = 16 No of nodes = 13 No interior nodes = 5 No of boundary nodes = 8
2
With the triangulation we associate the function space consisting of continuous, piecewise linear functions on vanishing on i.e Triangulation No interior nodes = 5 No of global basis functions = 5
3
1 2 3 4 5 6 7 8 9 10 11 12 13 Element Labeling 14 15 16
4
Node Labeling (global labeling) 12 34 5 6 7 8 9 1011 1213
5
global basis functions 12 34 5 6 7 8 9 1011 1213
6
12 34 5 6 7 8 9 1011 1213 global basis functions
7
Global basis functions
8
global basis functions 12 34 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 1011 5 1312
9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10
global basis functions 12 34 6 7 8 9 0 0 0 0 0 0 0 0 1011 5 1312 0 0
11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 12 34 5 6 7 8 9 1011 1213 Assemble linear system
12
12 34 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 1011 5 1312 12 34 6 7 8 9 0 0 0 0 0 0 0 0 1011 5 1312 0 0
13
Approximation of u 01 02 03 04 0.0695 06 07 08 09 0.04910 0.04911 0.04912 0.04913
14
Node Label (local labeling) 12 3 Each triangle has 3 nodes. Label them locally inside the triangle
15
Node and Element Label
16
Local label.vs. global label Matrix t(3,#elements) 16151413121110987654321 131211105555432132141 1211101312111013 12111087692 8769131211108769121110133
17
X-coordinate and y-coordinate Matrix p(2,#elements) 13121110987654321 0.750.25 0.7510.50 1001x 0.25 0.75 0.50 1 0011y
18
Boundary node vector e(#boundary node) e8e7e6e5e4e3e2e1 98764321start 14329876end
19
Approximation of u 01 02 03 04 0.0695 06 07 08 09 0.04910 0.04911 0.04912 0.04913
20
Global basis functions
21
Triangulation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.