Download presentation
Presentation is loading. Please wait.
1
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods: Error Estimation
2
Martin Burger Total Variation 2 Cetraro, September 2008 Error Estimation Start with the quadratic case D generalizes gradient Optimality
3
Martin Burger Total Variation 3 Cetraro, September 2008 Error Estimation Estimate 1: Two Solutions of Variational Problems Difference Scalar product with
4
Martin Burger Total Variation 4 Cetraro, September 2008 Error Estimation Use Young‘s inequality
5
Martin Burger Total Variation 5 Cetraro, September 2008 Error Estimation Estimate 2: Asymptotic for exact data Need regularity for : Source condition
6
Martin Burger Total Variation 6 Cetraro, September 2008 Error Estimation Source Condition Equivalent to existence of saddle point for
7
Martin Burger Total Variation 7 Cetraro, September 2008 Error Estimation
8
Martin Burger Total Variation 8 Cetraro, September 2008 Error Estimation Estimate 3: Asymptotic for noisy data
9
Martin Burger Total Variation 9 Cetraro, September 2008 Error Estimation Similar estimation as above yields
10
Martin Burger Total Variation 10 Cetraro, September 2008 Error Estimation Nonlinear Variational Method Optimality condition
11
Martin Burger Total Variation 11 Cetraro, September 2008 Error Estimation Stability Estimate between two solutions ´ Same procedure as before: take difference and use duality product with
12
Martin Burger Total Variation 12 Cetraro, September 2008 Error Estimation Error measure: symmetric Bregman distance ´ Note: symmetric Bregman distance is sum of non-symmetric ones
13
Martin Burger Total Variation 13 Cetraro, September 2008 Bregman distance R smooth and strictly convex in some H-space Same for symmetric Bregman distance
14
Martin Burger Total Variation 14 Cetraro, September 2008 Error Estimation R nonsmooth: Bregman distance multivalued and depends on the choice of the subgradient Note: error estimate possible for any appropriate subgradient
15
Martin Burger Total Variation 15 Cetraro, September 2008 Error Estimation R not strictly convex: Bregman distance is not a strict distance, possibly
16
Martin Burger Total Variation 16 Cetraro, September 2008 Error Estimation Bregman distance example
17
Martin Burger Total Variation 17 Cetraro, September 2008 Error Estimation Sparsity measure
18
Martin Burger Total Variation 18 Cetraro, September 2008 Error Estimation Total Variation Contrast change
19
Martin Burger Total Variation 19 Cetraro, September 2008 Error Estimation Contrast Change
20
Martin Burger Total Variation 20 Cetraro, September 2008 Error Estimation Estimate 2: Asymptotic for exact data
21
Martin Burger Total Variation 21 Cetraro, September 2008 Error Estimation Asymptotic
22
Martin Burger Total Variation 22 Cetraro, September 2008 Error Estimation Source condition
23
Martin Burger Total Variation 23 Cetraro, September 2008 Error Estimation Error estimate in Bregman distance Analogous in the noisy case
24
Martin Burger Total Variation 24 Cetraro, September 2008 Error Estimation Multivalued estimate Note: error estimate holds for any Open interpretation for total variation and
25
Martin Burger Total Variation 25 Cetraro, September 2008 Error Estimation TV Subgradients and edges
26
Martin Burger Total Variation 26 Cetraro, September 2008 Error Estimation TV subgradients
27
Martin Burger Total Variation 27 Cetraro, September 2008 Error Estimation
28
Martin Burger Total Variation 28 Cetraro, September 2008 Error Estimation
29
Martin Burger Total Variation 29 Cetraro, September 2008 Error Estimation
30
Martin Burger Total Variation 30 Cetraro, September 2008 Error Estimation Mean Curvature Source condition means smoothness of edge sets !!
31
Martin Burger Total Variation 31 Cetraro, September 2008 Error Estimation Bregman distance
32
Martin Burger Total Variation 32 Cetraro, September 2008 Error Estimation Second term
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.