Download presentation
Presentation is loading. Please wait.
1
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Optically sensitive MCP image tube with a Medipix2 ASIC readout John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund Space Sciences Laboratory University of California, Berkeley
2
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Motivation for new wavefront sensor detector kHz frame rates Larger format (> 256 x 256) –More accuators –More complex LGS images (parallax, etc) –Off null / open loop operation Very low (or zero!) readout noise High dynamic range and gated
3
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Centroid in presence of noise: 8 x 8 Noiseless 35% QE 10 photons --- 100 photons 1000 photons 8 x 8 2.5 e - rms 90% QE 6 x 6 2.5 e - rms 90% QE 4 x 4 2.5 e - rms 90% QE
4
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Photon Counting Q ADC V v Events Events Charge integrating Threshold Events Count (x,y,t)
5
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Imaging, Photon Counting Detectors Photocathode converts photon to electron MCP(s) amplify electron by 10 4 to 10 8 Rear field accelerates electrons to anode Patterned anode measures charge centroid
6
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu GaAsP Photocathodes Hayashida et al. Beaune 2005 NIM
7
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Wavefront Sensor Event Rates 5000 centroids Kilohertz feedback rates (atmospheric timescale) 1000 detected events per spot for sub-pixel centroiding 5000 x 1000 x 1000 = 5 Gigahertz counting rate! Requires integrating detector
8
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Medipix/Timepix ASIC readout 256 x 256 array of 55 µm pixels Integrates counts, not charge 100 kHz/pxl Frame rate: 1 kHz Low noise (100e - ) = low gain operation (10 ke - ) GHz global count rate ~1 W watt/chip, abuttable Developed at CERN ~ 500 transistors/pixel
9
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Readout Architecture 3328 bit Pixel Column 0 3328 bit Pixel Column 255 3328 bit Pixel Column 1 256 bit fast shift register 32 bit CMOS outputLVDS out Pixel values are digital (13 bit) Bits are shifted into fast shift register Choice of serial or 32 bit parallel output Maximum designed bandwidth is 100MHz Corresponds to 266µs frame readout
10
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu “Built-in” Electronic Shutter Enables/Disables counter Timing accuracy to 10 ns Uniform across Medipix Multiple cycles per frame No lifetime issues External input - can be phased to laser
11
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Vacuum Tube Design
12
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Vacuum Tube Design
13
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Vacuum Tube Design
14
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Vacuum Tube Design
15
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Vacuum Tube Design
16
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Difficulties over last two years Finding industrial partner to help fabricate vacuum tube and develop GaAs photocathode Burle merged with Photonis merged with DEP ITT - busy with military night vision Hamamatsu - too small a project Use in-house tube facilities with multi-alkali photocathode New brazing technique compatible with ceramic header materials (vacuum brazing) Slow leaks: tube failure Photocathode inconsistency
17
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Second tube process Success! Qualification: poor optical QE
18
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Quantum efficiency (factor of 4 too low)
19
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu First tests in darkroom
20
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Linearity and Resolution Projected pinhole pattern (1 x 2 mm)
21
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Flat field White light 66 MHz input rate No optic No “hex” pattern Black pixels are masked in Medipix2 Locally uniform 20 µs50 s
22
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Fixed pattern noise SNR > 200
23
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Old WWII watch movie
24
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Old WWII watch movie 2 (radium dial) Bkgd.002 ct/pxl/s Room Temp
25
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Gain and Event Threshold
26
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Gain and Event Threshold
27
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Electronic shutter and diode laser No shutter All images: room lights, 1kHz pulsed laser and 1 sec integ. Stretched by 400 1.5 µs shutter
28
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Medipix3 - late 2008 0.13 µm CMOS technology Twice as many transistors in pixel Concurrent readout/integration Serial readout at 250MHz clock Up to 10,000 frames/sec
29
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Summary and future work Demonstration of successful use of Medipix2 in sealed MCP tube More laboratory and telescope tests to be done Working with Photonis to incorporate our various readout technologies into their tubes –Delayline, cross strip, Medipix, Timepix, etc. –Standard industrial design –Better and more consistent photocathodes UV, neutron imaging tubes
30
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Acknowledgements Univ. of Barcelona University of Cagliari CEA CERN University of Freiburg University of Glasgow Czech Academy of Sciences Mid-Sweden University University of Napoli NIKHEF University of Pisa University of Auvergne Medical Research Council Czech Technical University ESRF University of Erlangen-Nurnberg Thanks to the Medipix Collaboration: This work was funded by an AODP grant managed by NOAO and funded by NSF
31
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu City Movie - 1 Cycle Line Frequency
32
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Extra slides
33
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Timepix version of Medipix Amplitude rather than counts using “time over threshold’ technique If charge clouds are large, can determine centroid to sub- pixel accuracy Tradeoff is count rate as event collisions in frame destroy centroid information Single UV photon events
34
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Original Medipix mode readout (UV) Zoom 256 x 256 (14 mm)
35
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Factor of 8 improved resolution! 256 x 256 converted to 4096x4096 pixels (3.4µm pixels)
36
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Factor of 8 improved resolution! 256 x 256 converted to 4096x4096 pixels (3.4µm pixels)
37
SPIE Instr. for Astronomy, Marseille, John Vallerga, jvv@ssl.berkeley.edu Centroid error vs. input fluence
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.