Download presentation
Presentation is loading. Please wait.
1
1
2
2 Exam 1Sentential LogicTranslations (+) Exam 2Sentential LogicDerivations Exam 3Predicate LogicTranslations Exam 4Predicate LogicDerivations 6 derivations@ 15 points+ 10 free points Exam 5very similar to Exam 3 Exam 6very similar to Exam 4 Exam 1Sentential LogicTranslations (+) Exam 2Sentential LogicDerivations Exam 3Predicate LogicTranslations Exam 4Predicate LogicDerivations 6 derivations@ 15 points+ 10 free points Exam 5very similar to Exam 3 Exam 6very similar to Exam 4
3
3 OO Tilde-Universal-Out OO Universal-Out UDUniversal Derivation OO Tilde-Existential-Out OO Existential-Out II Existential-In today day 1 day 2 today day 2 day 1
4
4 OLD name ––––– OLD name ––––– a name counts as OLD precisely if it occurs somewhere unboxed and uncancelled OO II
5
5 NEW name ––––– NEW name : : a name counts as NEW precisely if it occurs nowhere unboxed or uncancelled OO UD
6
6 OO Tilde-Universal Out OO Tilde-Existential-Out
7
7 is any variable is any (official) formula not everyone is H –––––––––––––– someone is not H xHx –––––– x Hx –––––– example
8
8 is any variable is any (official) formula no one is H –––––––––––––– everyone is un H xHx –––––– x Hx –––––– example = not anyone is H
9
9 ; ( & ) ––––––––– ; ( ) ––––––––– & &O&O OO
10
10 (6) (5) (4) (3) (2) (1) not every F is H / some F is un-H 5, x(Fx & Hx) 4, Fa & Ha 3, (Fa Ha) 1, x (Fx Hx) DD : x(Fx & Hx) Pr x(Fx Hx) II OO OO OO
11
11 every F is G ; no G is H / no F is H (12) (13) (14) (10) (11) (15) (9) (8) (7) (6) (5) (4) (3) (2) (1) 8,10, Ga 9,9, Ga Ha 12,13, Ha 7, Fa Ha 11,14, 6,6, (Ga & Ha) 1,1, Fa Ga 4, Fa & Ha 2, x (Gx & Hx) DD : As x(Fx & Hx) DD : x(Fx & Hx) Pr x(Gx & Hx) Pr x(Fx Gx) OO &O OO &O II OO OO OO OO
12
12 : : ° ° DD DD is any (official) formula is any variable As D is a species of ID
13
13 (13) (12) (10) (11) (14) (9) (8) (7) (6) (5) (4) (3) (2) (1) 10,11, Ha Ha 8, Fa Ha 9, Fa 12,13, 7, Fa & Ha 6,6, (Fa & Ha) 5,5, (Fa Ha) 3, x (Fx & Hx) 1, x (Fx Hx) DD : As x(Fx & Hx) D (ID) : x(Fx & Hx) Pr x(Fx Hx) OO &O &O II OO OO OO OO OO
14
14 (12) (13) (14) (10) (11) (15) (9) (8) (7) (6) (5) (4) (3) (2) (1) 8,8, (Ga & Ha) 12, Ga Ha 11,13, Ha 4,4, Ha 7,9,7,9, Ga 10,14, Fa 6,6, x (Gx & Hx) 1,1, Fa Ga 2,2, Fa & Ha DD : As x(Gx & Hx) D (ID) : x(Gx & Hx) Pr x(Fx & Hx) Pr x(Fx Gx) OO &O OO O OO II &O OO OO
15
15 (5) (10) (9) (8) (7) (6) (4) (3) (2) (1) 1, Fa Ga 9, x(Gx & Hx) 7,8, Ga & Ha 5,6, Ga Ha 4, Fa 2, Fa & Ha DD (… I) : x(Gx & Hx) Pr x(Fx & Hx) Pr x(Fx Gx) OO II &I&I OO &O OO
16
16 (8) (10) (11) (12) (9) (7) (6) (5) (4) (3) (2) (1) if anyone is F, then everyone is unH / if someone is F, then no one is H 1, Fa y Hy 7,8, y Hy 10, Hb 9,11, 5, Hb 3, Fa DD : As yHy DD : yHy As xFx CD : xFx yHy Pr x(Fx y Hy) OO OO OO II OO OO
17
17 (10) (11) (12) (9) (8) (7) (6) (5) (4) (3) (2) (1) if someone is F, then someone is unH / if anyone is F, then not-everyone is H 9, Hb 6, Hb 10,11 1,8, y Hy 4, xFx DD : As yHy ID : yHy As Fa CD : Fa yHy UD : x(Fx yHy) Pr xFx y Hy OO OO OO OO II
18
18
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.