Download presentation
1
Pertemuan 12, 13, 14 Bottom-Up Parsing
Matakuliah : T0174 / Teknik Kompilasi Tahun : 2005 Versi : 1/6 Pertemuan 12, 13, 14 Bottom-Up Parsing
2
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menjelaskan prinsip kerja bottom up parsing yang diimplementasikan dengan stack (C2) Mahasiswa dapat mendemonstrasikan pembuatan LR parsing (C3) Mahasiswa dapat mendemonstrasikan pembuatan SLR parsing table dan proses parsingnya (C3)
3
Jenis-jenis bottom-up parsing Shift reduce parsing
Outline Materi Jenis-jenis bottom-up parsing Shift reduce parsing Implementasi dengan stack Operator precedence parsing LR-parsing algoritma LR parsing Konstruksi LR parsing table Konstruksi SLR parsing tabel
4
Contents Introduction of Bottom-Up Parsing Handles of String
Stack Implementation of Shift-Reduce Parsing Conflict During Shift-Reduce Parsing LR Parsers LR(k) Parsers Constructing SLR (Simple LR) Parser Constructing LR Parsing Table LALR Parsing Table Using Ambiguous Grammars
5
Introduction of Bottom-Up Parser
Also called shift-reduce parser Construct a parse tree for an input string beginning at the leaves and working up toward the root Reducing a string w to the start symbol S At each reduction step, a particular substring RHS of production is replaced with by the symbol on LHS e.g. S → aABe A → Abc | b B → d process w = abbcde Then abbcde → aAbcde → aAde → aABe → S (reduction steps) S → aABe → aAde → aAbcde → abbcde (rightmost derivation)
6
Handles of String (1/2) Handles of a string
A substring that matches the right side of a production and whose reduction to the non-terminal on LHS presents one step along the reverse of a right derivation Formally, handle of a right sentential form γ is a production A → β and a position of γ where the string β may be found and replaced by A to produce the previous right sentential form in a rightmost derivation of γ e.g. From the above example abbcde is a right sentential form whose handle is A → b and aAbcde has a handle A → Abc and so on. If a grammar is unambiguous, there exist only one handle for every right sentential form
7
Handles of String (2/2) Ambiguous Grammar Case Example 1) E → E + E
E → id Example 1 has two different rightmost derivations of the same string id + id * id implies that some of the right sentential form has more than one handle e.g E → id and E → E + E are handles from E + E * id
8
Stack Implementation of Shift-Reduce Parsing
Next input symbol is shifted onto the top of the stack Reduce A handle on the stack is replaced by the corresponding non-terminal (A handle always appears on the top of the stack) Accept Announce the successful completion Stack Content Input Action 1 $ id + id * id $ shift 2 id $ + id * id $ reduce by E → id 3 E $ 4 + E $ id * id $ 5 id + E $ * id $ 6 E + E $ 7 * E + E $ 8 id * E + E $ 9 E * E + E $ reduce by E → E*E 10 reduce by E+E 11 accept
9
Conflict During Shift-Reduce Parsing
Shift/Reduce conflict Cannot decide shift or reduce Reduce/Reduce conflict Cannot decide which production to use for reduce e.g. stmt → if expr then stmt | if expr then stmt else stmt | other stack has a handle "if expr them stmt" : shift/reduce conflict
10
LR(k) Parsers Concept left to right scan and rightmost derivation with k lookahead symbols Input tape Stack LR Parsing Program output Action/Goto Table Parsing Table
11
Constructing SLR (Simple LR) parser (1/9)
Viable Prefix A prefix of a right sentential form that does not continue past the rightmost handle of that sentential form. It always appears the top of the stack of the shift-reduce parser LR(0) item of G A production of G with a dot at some position of the RHS e.g. A → XYZ ⇒ A → ·XYZ , A → X·YZ , A → XY·Z , A → XYZ· Central idea of SLR construct a DFA that recognize viable prefixed. The state of the DFA consists of a set of items
12
Constructing SLR (Simple LR) parser (2/9)
Three operations for construction Augmenting a grammar Add S' → S to indicate the parser when it should stop and accept closure operation Suppose I is a set of items for G, then closure(I) 〓 ① every item in I is added to closure(I) ② If A → α·Bβ ∈ closure(I) & B → γ exists, then add B → ·γ to cloasure(I) e.g. E' → E, E → E + T | T, T → T * F | F, F → (E) | id Start with I = { E' → ·E}, then closure(I) = { E' → ·E, E → ·E + T, E →·T, T → ·T * F, T → ·F, F → · (E) F → ·id } kernel items (dots are not at the left end) vs. non-kernel items
13
Constructing SLR (Simple LR) parser (3/9)
Three operations for construction goto operation Suppose I be a set of items and X be a grammar symbol, then goto(I, X) = the closure of the set of all items [A → αX·β] such that A → α·Xβ ∈ I e.g. Suppose I = { E' → E·, E → E·+ T}, then goto(I, +) 〓 { E → E + ·T, T → ·T * F, T → ·F, F → · (E), F → ·id }
14
Constructing SLR (Simple LR) parser (4/9)
Draw state diagram for the following augmented grammar e.g. E' → E , E → E + T | T, T → T * F | F, F → (E) | id I0 I10 I7 ( TT*F· TT*·F F· (E) F·id I4 E`·E E·E+T E·T T·T*F T·F F· (E) F·id F I11 F(E) · I2 T ET· TT·*F * F ) I3 I8 TF· ( EE·+T F(E·) id E I5 I1 F E`E. EE.+T Fid· I4 + I6 F(·E) E·E+T E·T T·T*F T.F F· (E) F·id E EE+·T T·T*F T·F F· (E) F·id id I6 id + ( F I9 EE+T· TT·*F I3 T ( * I7
15
Constructing SLR (Simple LR) parser (5/9)
SLR Parsing table ① Build a DFA from the given grammar ② Find follow(A) ∀nonterminal ③ determine parsing actions for each I a) if [A → α․aβ]∈Ii and goto(Ii, a) = Ij then set action[i,a] = shift j(Sj) b) if [A → α·] ∈Ii then set action[i, a] = reduce A → α ∀a in FOLLOW(A) except A = S' c) if [S' → S·] ∈Ii then set action[i, $] = accept ④ For all nonterminal A if goto(Ii, A) = Ij then set goto[i, A] = j
16
Constructing SLR (Simple LR) parser (6/9)
SLR Parsing table ⑤ For all other entries are made "error" ⑥ Initial state is one containing [S' → S·] e.g 1) E → E + T 2) E → T 3) T → T * F, 4) T → F 5) F → (E) 6) F → id FOLLOW(E) = { +, $, )} FOLLOW(T) = {*,+,$,)} FOLLOW(F) = {*,+,$,)} Action Goto id + * ( ) $ E T F S5 S4 1 2 3 S6 Accept r2 S7 r4 4 8 5 r6 6 9 7 10 S11 r1 r3 11 r5
17
Constructing SLR (Simple LR) parser (7/9)
Executing a parser with the parsing table configuration (S0X0S1X1 … XmSm, aiai+1…am$) = (stack content, unexpended input) Resulting configuration after action[Sm, ai] i) = Sj (shift and goto state j) (S0X0S1X1 … XmSmaiS, ai+1…an$) ii) = rp (reduce A → β) (S0X0S1X1 … Xm-rSm-rAS, aiai+1…an$) where S = goto[Sm-r, A] and r = iii) accept (parsing is completed) iv) error (error recovery is needed)
18
Constructing SLR (Simple LR) parser (8/9)
Executing a parser with the parsing table stack input action 1 0$ id * id + id$ shift 2 5id0$ * id + id$ reduce F → id 3 3F0$ reduce T → F 4 2T0$ 5 7*2T0$ id + id$ 6 5id7*2T0$ + id$ reduce F → id 7 10F7*2T0$ reduce T → T * F 8 reduce E → T 9 1E0$ 10 6+1E0$ id$ 11 5 id6+1E0$ $ reduce F → id 12 3F6+1E0$ reduce T → F 13 9T6+1E0$ reduce E → E + T 14 accept
19
Constructing SLR (Simple LR) parser (9/9)
A grammar that is not ambiguous, not SLR(1) S → L = R , S → R , L → * R , L → id , R → L Then, FOLLOW(R) = FLLOW(S) = FOLLOW(L) = { = } Action[2, =] → Shift or Reduce Because SLR is not powerful enough to remember sufficient left context to decide next action on "=" S`·S S·L=R S·R L·*R L·id R·L SL·=R RL· SL=·R R·L L·*R L·id I0 I2 I6 L =
20
Constructing LR Parsing Table (1/3)
Central idea In SLR, reduction of A → α is determined by looking to see if a comes after α while LR sees if βAa is allowed Redefinition of items to include a terminal symbol [A → α·β, a] The lookahead symbol a has no effect when β ≠ ε a ∈ FOLLOW(A) How to find the collection of sets of valid items
21
Constructing LR Parsing Table (2/3)
Closure(I) if [A → α·Bβ, a] ∈ I, for each B → γ in G' add [ B → ·γ, FIRST(βα)] to I repeat until no more production is added. goto[I, x] if [A → α·Xβ, a] ∈ I, create J with [A → αX·β, a], and find closure(J)
22
Constructing LR Parsing Table (3/3)
Example S' → S, S → CC, C → cC | d I8 I4 CcC·, c/d Cd·, c/d State Action Goto c d $ S C S3 S4 1 2 Accept S6 S7 5 3 8 4 R3 R1 6 9 7 R2 d I3 C I0 Cc·C, c/d C·cC, c/d C·d, c/d S`·S, $ S·CC, $ C·cC, c/d C·d, c/d c c C I2 S SC·C, $ C·cC, $ C·d, $ C I5 I1 S`S, $ c I6 Cc·C, $ C·cC, $ C·d, $ C d I5 I7 <LR(1) Parsing Table > SCC·, $ Cd·, $ I9 c CcC·, $ <LR(1) Finite State Diagram>
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.