Presentation is loading. Please wait.

Presentation is loading. Please wait.

Separation of Convolutive Image Mixtures Technion, Dept. EE Yoav Y. Schechner Joint studies with: Nahum Kiryati & Ronen Basri; Sarit Shwartz & Michael.

Similar presentations


Presentation on theme: "Separation of Convolutive Image Mixtures Technion, Dept. EE Yoav Y. Schechner Joint studies with: Nahum Kiryati & Ronen Basri; Sarit Shwartz & Michael."— Presentation transcript:

1 Separation of Convolutive Image Mixtures Technion, Dept. EE Yoav Y. Schechner Joint studies with: Nahum Kiryati & Ronen Basri; Sarit Shwartz & Michael Zibulevsky 1

2 Separation of Convolved Images window camera 35 Schechner, Kiryati & Basri, Separation of transparent layers using focus

3 “far” scene camera “close” scene Convolutive Mixture 36 Schechner, Kiryati & Basri, Separation of transparent layers using focus

4 Optical Sectioning (microscopy) objects in spaceraw frames 37

5 Transparent Layers For each frequency Instabilities as Problematic at low frequencies Schechner, Kiryati & Basri, Separation of transparent layers using focus

6 Processed images l far l close Acquired images raw far raw close Schechner, Kiryati & Basri, Separation of transparent layers using focus

7 W separate A mix Independent Sources Linear Mixture Unknown Known Blind Source Separation

8 A mix & blur Convolutive Mixtures Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 41

9 Separation Optimization W separate Shwartz, Schechner & Zibulevsky, Convolutive Mixtures

10 Mutual Information of a Convolutive Mixture W separate A mix & blur Shwartz, Schechner & Zibulevsky, Convolutive Mixtures

11 Separation in the Frequency Domain FFT Shwartz, Schechner & Zibulevsky, Convolutive Mixtures

12 Problem: No Statistic Ensemble in FT No statistics per frequency Shwartz, Schechner & Zibulevsky, Convolutive Mixtures

13 Separation by Sub-band Images Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 43

14 Image Statistics * See for example: Simoncelli (99)

15 MI of Sparse Sources Parametric PDF MI is not convex in MI is convex in

16 Scale & Sign Ambiguity Shwartz, Schechner & Zibulevsky, Convolutive Mixture 44 transform inverse transform … imbalance

17 Permutation Ambiguity Shwartz, Schechner & Zibulevsky, Convolutive Mixture 45 transform inverse transform inverse … crosstalk

18 Out of Focus Blur See for example: Stokseth (69), Born; Wolf (70), Hecht (87), Mahajan (94), Braat; Dirksen; Janssen (02), Sheppard; Cooper (04).

19 Parametric Model for Blur Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 46

20 Parametric Model for the Blur

21 Simulations of Natural Images

22 Simulation Blind Estimation Using Ideal kernel + 1% noise Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 47

23 Experiment Raw images High-pass of raw images Separation results Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 48


Download ppt "Separation of Convolutive Image Mixtures Technion, Dept. EE Yoav Y. Schechner Joint studies with: Nahum Kiryati & Ronen Basri; Sarit Shwartz & Michael."

Similar presentations


Ads by Google