Download presentation
Presentation is loading. Please wait.
1
Separation of Convolutive Image Mixtures Technion, Dept. EE Yoav Y. Schechner Joint studies with: Nahum Kiryati & Ronen Basri; Sarit Shwartz & Michael Zibulevsky 1
2
Separation of Convolved Images window camera 35 Schechner, Kiryati & Basri, Separation of transparent layers using focus
3
“far” scene camera “close” scene Convolutive Mixture 36 Schechner, Kiryati & Basri, Separation of transparent layers using focus
4
Optical Sectioning (microscopy) objects in spaceraw frames 37
5
Transparent Layers For each frequency Instabilities as Problematic at low frequencies Schechner, Kiryati & Basri, Separation of transparent layers using focus
6
Processed images l far l close Acquired images raw far raw close Schechner, Kiryati & Basri, Separation of transparent layers using focus
7
W separate A mix Independent Sources Linear Mixture Unknown Known Blind Source Separation
8
A mix & blur Convolutive Mixtures Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 41
9
Separation Optimization W separate Shwartz, Schechner & Zibulevsky, Convolutive Mixtures
10
Mutual Information of a Convolutive Mixture W separate A mix & blur Shwartz, Schechner & Zibulevsky, Convolutive Mixtures
11
Separation in the Frequency Domain FFT Shwartz, Schechner & Zibulevsky, Convolutive Mixtures
12
Problem: No Statistic Ensemble in FT No statistics per frequency Shwartz, Schechner & Zibulevsky, Convolutive Mixtures
13
Separation by Sub-band Images Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 43
14
Image Statistics * See for example: Simoncelli (99)
15
MI of Sparse Sources Parametric PDF MI is not convex in MI is convex in
16
Scale & Sign Ambiguity Shwartz, Schechner & Zibulevsky, Convolutive Mixture 44 transform inverse transform … imbalance
17
Permutation Ambiguity Shwartz, Schechner & Zibulevsky, Convolutive Mixture 45 transform inverse transform inverse … crosstalk
18
Out of Focus Blur See for example: Stokseth (69), Born; Wolf (70), Hecht (87), Mahajan (94), Braat; Dirksen; Janssen (02), Sheppard; Cooper (04).
19
Parametric Model for Blur Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 46
20
Parametric Model for the Blur
21
Simulations of Natural Images
22
Simulation Blind Estimation Using Ideal kernel + 1% noise Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 47
23
Experiment Raw images High-pass of raw images Separation results Shwartz, Schechner & Zibulevsky, Convolutive Mixtures 48
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.