Download presentation
Presentation is loading. Please wait.
1
Stacks & Queues Infix Calculator CSC 172 SPRING 2002 LECTURE 5
2
Workshop sign-up Still time : Dave Feil-Seifer df001i@mail.rochester.edu Ross Carmara rc001i@mail.rochester.edurc001i@mail.rochester.edu
3
Infix to postfix 1 + 2 * 3 == 7 (because multiplication has higher precidence) 10 – 4 – 3 == 3 (because subtraction proceeds left to right)
4
Infix to postfix 4 ^ 3 ^ 2 == 262144 != 4096 Generally, Rather than:
5
Precidence A few simple rules: () > ^ > * / > + - Subtraction associates left-to-right Exponentiation associates right to left
6
Infix Evaluation 1 – 2 – 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 2 == -8 (1 – 2) – ( ( ( ( 4 ^ 5) * 3) * 6) / (7 ^ ( 2 ^ 2 ) ) ) Could you write a program to evaluate stuff like this?
7
Postfix If we expressed (1 – 2) – ( ( ( ( 4 ^ 5) * 3) * 6) / (7 ^ ( 2 ^ 2 ) ) ) As 1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - Then, we could use the postfix stack evaluator
8
Postfix evaluation using a stack 1. Make an empty stack 2. Read tokens until EOF a. If operand push onto stack b. If operator i. Pop two stack values ii. Perform binary operation iii. Push result 3. At EOF, pop final result
9
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -
10
1
11
2121
13
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 4
14
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 5 4
15
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 1024
16
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 3 1024
17
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 3072
18
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 6 3072
19
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 18432
20
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 7 18432
21
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 2 7 18432
22
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 2 7 18432
23
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 4 7 18432
24
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 2041 18432
25
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - 7
26
1 2 – 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - -8
27
But how to go from infix to postfix? Could you write a program to do it? What data structures would you use Stack Queue How about a simple case just using “+” 1+ 2 + 7 + 4 1 2 7 4 + + + Operands send on to output? Operator push on stack? Pop ‘em all at the end?
28
More complex 2 ^ 5 – 1 == 2 5 ^ 1 – Modify the simple rule? If you are an operator, pop first, then push yourself? 1 + 2 + 7 + 4 1 2 + 7 + 4 + ok
29
Even more complex 3 * 2 ^ 5 - 1 3 2 5 ^ * 1 – If you are an operator: Pop if the top of the stack is higher precedence than
30
Infix to postfix Stack Algorithm Operands : Immediately output Close parenthesis: Pop stack until open parenthesis Operators: 1. Pop all stack symbols until a symbol of lower precedence (or a right-associative symbol of equal precedence) appears. 2. Push operator EOF: pop all remaining stack symbols
31
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7
32
1
33
- 1
34
- 1 2
35
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 ^- ^- 1 2
36
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 ^- ^- 1 2 3
37
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 ^^- ^^- 1 2 3
38
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 ^^- ^^- 1 2 3 3
39
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 - 1 2 3 3 ^ ^ -
40
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 (- (- 1 2 3 3 ^ ^ -
41
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 (- (- 1 2 3 3 ^ ^ - 4
42
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 +(- +(- 1 2 3 3 ^ ^ - 4
43
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 +(- +(- 1 2 3 3 ^ ^ - 4 5
44
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 *+(- *+(- 1 2 3 3 ^ ^ - 4 5
45
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 *+(- *+(- 1 2 3 3 ^ ^ - 4 5 6
46
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 - 1 2 3 3 ^ ^ - 4 5 6 * +
47
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 *- *- 1 2 3 3 ^ ^ - 4 5 6 * +
48
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 *- *- 1 2 3 3 ^ ^ - 4 5 6 * + 7
49
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 1 2 3 3 ^ ^ - 4 5 6 * + 7 * -
50
1 – 2 ^ 3 ^ 3 – ( 4 + 5 * 6) * 7 1 2 3 3 ^ ^ - 4 5 6 * + 7 * - ((1 – (2 ^ (3 ^ 3))) – (( 4 + (5 * 6)) * 7)) Input To evaluation stack
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.