Download presentation
Presentation is loading. Please wait.
1
Combustion Team Supersonic Combustion 6/14/20151NASA Grant URC NCC NNX08BA44A Faculty Advisors: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad Sara Esparza Cesar Olmedo Alonzo Perez Student Researchers:
2
Outline Background Determination of Supersonic Flow – Schlieren system – Transparent (acrylic) Chamber – Cold Flow FLUENT Analyses Refuel Hydrogen Tank Large Compressor Incorporate setup – From miniature chamber – To wind tunnel
3
Background Scramjet – Main form of combustion is supersonic Hypersonic flight Space travel Circumnavigation 6/14/2015NASA Grant URC NCC NNX08BA44A3
4
Background Scramjet engine works at supersonic speeds Goal - Design and maintain supersonic combustion in combustor 6/14/2015NASA Grant URC NCC NNX08BA44A4 Mach 5Mach 3Mach 5
5
Standard Thrust Calculations 6/14/2015NASA Grant URC NCC NNX08BA44A5 Micro Nozzle Throat Area = 0.01 ft 2 Exit / Throat Area = 2.0 Entrance / Throat Area = 5.76 Thrust = 104 lbs Hyper-X Approximation Throat Area = 1.0 ft 2 Exit / Throat Area = 2.0 Entrance / Throat Area = 5.76 Thrust = 10,479 lbs
6
Miniature Nozzle Modifications Small scale nozzle Need to calculate discharge coefficient – Boundary layer interaction – Affects mass flow rate 6/14/2015NASA Grant URC NCC NNX08BA44A6
7
Miniature Nozzle Calculations Discharge Coefficient ASME Tables Thrust Built thrust plate to compare experimental values 6/14/2015NASA Grant URC NCC NNX08BA44A7
8
Test Parameters Engine Application Operating Parameters – 134 psi Air – 200 psi Hydrogen Air Velocity Perspective – Air inside ~ 2.5 Mach – Air outside
9
Determination of Mach Speed Calculations Schlieren Imaging – Cold flow – Analyze shock wave profiles
10
Schlieren Imaging Acrylic chamber –Allows visualization –H Studios Haziza polishing Schlieren Imaging –Cold flow –Analyze shock wave profiles
11
Schlieren System Built platform for wind tunnel Three Schlieren cases – Nozzle alone – Constant area chamber section – Large diameter chamber section 6/14/2015NASA Grant URC NCC NNX08BA44A11
12
Possible Results Overexpanded Pressure at nozzle exit lower than ambient Underexpanded Exit pressure greater than back pressure
13
Schlieren Imaging 6/14/2015NASA Grant URC NCC NNX08BA44A13 Best Picture Overexpanded Pressure at nozzle exit lower than ambient
14
FLUENT Results 6/14/2015NASA Grant URC NCC NNX08BA44A14
15
Wind Tunnel Modifications Transfer miniature chamber setup to wind tunnel 6/14/2015NASA Grant URC NCC NNX08BA44A15
16
Refuel Hydrogen Tank Ordered! Arrives by Friday
17
Testing Improve testing capabilities Thrust measurements – Force transducers Wind tunnel incorporations 6/14/2015NASA Grant URC NCC NNX08BA44A17
18
Future Work Schlieren setup and imaging Purchase compressor More Testing NASA Report USC Fluids Conference
19
Thanks!! Kalind Carpenter Ramiro Galicia Any Questions?
20
Timeline 2011 Hypersonic Combustion Team Timeline: March 2011 - June2011 2011 Student NameMarchAprilMayJune Sara Esparza Finish fabrication of combustion chamber Schlieren Photography Setup & Analysis Test Intake with Hydrogen Publish Papers Test Full Thrust System in Wind Tunnel Fluent analysis of hydrogen and air inside intake mixture Determine the possibility of premixing hydrogen Cesar Olmedo Finish fabrication of combustion chamber Finalize Spark System and Strength Schlieren Photography Setup Test Intake with Hydrogen Publish Papers Test Full Thrust System in Wind Tunnel Fluent analysis of combustion chamber 10//2009NASA Grant URC NCC NNX08BA44A
21
6/14/2015NASA Grant URC NCC NNX08BA44A Textbook References Anderson, J. “Compressible Flow.” Anderson, J. “Hypersonic & High Temperature Gas Dynamics” Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion” AIAA Educational Series, Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3 rd ed. 1999. Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion” AIAA Educational Series. Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer” Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook” McGraw-Hill Turns, S.R. “An Introduction to Combustion” White, E.B. “Fluid Mechanics”. 21
22
6/14/2015NASA Grant URC NCC NNX08BA44A Journal References Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41 st AIAA Joint Propulsal. 2005-4105. Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988 Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4 th Congress, Paris, France, 64-579, Aug 1964 Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008. Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988. Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005. Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009. Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001 McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008 Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example” Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame- Holder Scramjet. AIAA 2005-3358, 2005. Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007. 22
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.