Download presentation
Presentation is loading. Please wait.
Published byAlexa McLean Modified over 10 years ago
1
unité #5 Analyse numérique matricielle Giansalvo EXIN Cirrincione
2
Décomposition en valeurs singulières (SVD)
am1 amn a11 a1n U n 1 V = Full SVD valeurs singulières
3
Décomposition en valeurs singulières (SVD)
am1 amn a11 a1n U n 1 V = am1 amn a11 a1n U n 1 V = ^ Reduced SVD
4
Décomposition en valeurs singulières (SVD)
Full SVD Reduced SVD
5
Approximation au sens des moindres carrées
Example: polynomial data fitting
6
Approximation au sens des moindres carrées
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -4 -3 -2 -1 2 f(x) xi yi
7
Approximation au sens des moindres carrées
discrete square wave interpolation m = n = 11 least squares m = 11 , n = 8
8
Approximation au sens des moindres carrées
Posons le problème matriciellement
9
Approximation au sens des moindres carrées
système linéaire de n équations et n inconnues erreur d’approximation Matrice de Vandermonde ( )
10
Approximation au sens des moindres carrées
forme quadratique Équations normales
12
The system is nonsingular iff A has full rank.
b r = b - A x range(A) y = A x = Pb The system is nonsingular iff A has full rank.
13
The system is nonsingular iff A has full rank.
14
Solution par les équations normales
factorisation de Cholesky AHA est une matrice n x n hermitienne strictement définie positive 1. Form the matrix AHA and the vector AH b 2. Compute the Cholesky factorization AHA = RHR 3. Solve the lower-triangular system RH w = AH b for w 4. Solve the upper-triangular system R x = w for x
15
Solution par la factorisation QR (Householder)
reduced QR factorization 1. Compute the reduced QR factorization 2. Compute the vector 3. Solve the upper-triangular system for x
16
Solution par la SVD 1. Compute the reduced SVD 2. Compute the vector
3. Solve the diagonal system for w 4. Set
17
Comparison of algorithms
speed : normal equations standard : QR factorization A close to singular : SVD Drawbacks normal equations : not always stable in the presence of rounding errors QR factoriz.: less-than-ideal stability properties if A is close to singular SVD : expensive for m n
18
Conditionnement et précision
19
Conditionnement du problème des moindres carrées
Données : A , b Solutions : x , y range(A) y = A x r = b - A x b = Pb closeness of the fit
20
Conditionnement du problème des moindres carrées
Données : A , b Solutions : x , y 2-norm relative condition numbers exact for certain b upper bounds
21
highly ill-conditioned basis
Stabilité des méthodes des moindres carrées exemple Least squares fitting of the function exp(sin(4)) on the interval [0,1] by a polynomial of degree 14 x15 = 1 highly ill-conditioned basis very close fit
22
Stabilité des méthodes des moindres carrées
exemple reduced factorisation QR (Householder) The rounding errors have been amplified by a factor of order This inaccuracy is explained by ill-conditioning, not instability.
23
Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) implicit calculation of the product QH b
24
Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) implicit calculation of the product QH b
25
Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) backward stable
26
Stabilité des méthodes des moindres carrées
exemple SVD It beats Householder triangularization with column pivoting ( MATLAB's \ ) by a factor of about 3 backward stable
27
Stabilité des méthodes des moindres carrées
exemple équations normales factorisation de Cholesky not even a single digit of accuracy unstable
28
Stabilité des méthodes des moindres carrées
BS least squares algorithm The condition number of the LS problem may lie anywhere in the range to 2 .
29
Stabilité des méthodes des moindres carrées
BS least squares algorithm Cholesky factorization (BS) The normal equations are typically unstable for ill-conditioned problems involving close fits.
30
Stabilité des méthodes des moindres carrées
The solution of the full-rank least squares problem via the normal equations is unstable. Stability can be achieved, however, by restriction to a class of problems in which (A) is uniformly bounded above or (tan)/ is uniformly bounded below. The normal equations are typically unstable for ill-conditioned problems involving close fits.
31
FINE
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.