Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unité #5 Analyse numérique matricielle Giansalvo EXIN Cirrincione.

Similar presentations


Presentation on theme: "Unité #5 Analyse numérique matricielle Giansalvo EXIN Cirrincione."— Presentation transcript:

1 unité #5 Analyse numérique matricielle Giansalvo EXIN Cirrincione

2 Décomposition en valeurs singulières (SVD)
am1 amn a11 a1n U  n 1 V = Full SVD valeurs singulières

3 Décomposition en valeurs singulières (SVD)
am1 amn a11 a1n U  n 1 V = am1 amn a11 a1n U  n 1 V = ^ Reduced SVD

4 Décomposition en valeurs singulières (SVD)
Full SVD Reduced SVD

5 Approximation au sens des moindres carrées
Example: polynomial data fitting

6 Approximation au sens des moindres carrées
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -4 -3 -2 -1 2 f(x) xi yi

7 Approximation au sens des moindres carrées
discrete square wave interpolation m = n = 11 least squares m = 11 , n = 8

8 Approximation au sens des moindres carrées
Posons le problème matriciellement

9 Approximation au sens des moindres carrées
système linéaire de n équations et n inconnues erreur d’approximation Matrice de Vandermonde ( )

10 Approximation au sens des moindres carrées
forme quadratique Équations normales

11

12 The system is nonsingular iff A has full rank.
b r = b - A x range(A) y = A x = Pb The system is nonsingular iff A has full rank.

13 The system is nonsingular iff A has full rank.

14 Solution par les équations normales
factorisation de Cholesky AHA est une matrice n x n hermitienne strictement définie positive 1. Form the matrix AHA and the vector AH b 2. Compute the Cholesky factorization AHA = RHR 3. Solve the lower-triangular system RH w = AH b for w 4. Solve the upper-triangular system R x = w for x

15 Solution par la factorisation QR (Householder)
reduced QR factorization 1. Compute the reduced QR factorization 2. Compute the vector 3. Solve the upper-triangular system for x

16 Solution par la SVD 1. Compute the reduced SVD 2. Compute the vector
3. Solve the diagonal system for w 4. Set

17 Comparison of algorithms
speed : normal equations standard : QR factorization A close to singular : SVD Drawbacks normal equations : not always stable in the presence of rounding errors QR factoriz.: less-than-ideal stability properties if A is close to singular SVD : expensive for m  n

18 Conditionnement et précision

19 Conditionnement du problème des moindres carrées
Données : A , b Solutions : x , y range(A) y = A x r = b - A x b = Pb closeness of the fit

20 Conditionnement du problème des moindres carrées
Données : A , b Solutions : x , y 2-norm relative condition numbers exact for certain  b upper bounds

21  highly ill-conditioned basis
Stabilité des méthodes des moindres carrées exemple Least squares fitting of the function exp(sin(4)) on the interval [0,1] by a polynomial of degree 14  x15 = 1  highly ill-conditioned basis  very close fit

22 Stabilité des méthodes des moindres carrées
exemple reduced factorisation QR (Householder) The rounding errors have been amplified by a factor of order This inaccuracy is explained by ill-conditioning, not instability.

23 Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) implicit calculation of the product QH b

24 Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) implicit calculation of the product QH b

25 Stabilité des méthodes des moindres carrées
exemple factorisation QR (Householder) backward stable

26 Stabilité des méthodes des moindres carrées
exemple SVD It beats Householder triangularization with column pivoting ( MATLAB's \ ) by a factor of about 3 backward stable

27 Stabilité des méthodes des moindres carrées
exemple équations normales factorisation de Cholesky not even a single digit of accuracy unstable

28 Stabilité des méthodes des moindres carrées
BS least squares algorithm The condition number of the LS problem may lie anywhere in the range  to 2 .

29 Stabilité des méthodes des moindres carrées
BS least squares algorithm Cholesky factorization (BS) The normal equations are typically unstable for ill-conditioned problems involving close fits.

30 Stabilité des méthodes des moindres carrées
The solution of the full-rank least squares problem via the normal equations is unstable. Stability can be achieved, however, by restriction to a class of problems in which (A) is uniformly bounded above or (tan)/ is uniformly bounded below. The normal equations are typically unstable for ill-conditioned problems involving close fits.

31 FINE


Download ppt "Unité #5 Analyse numérique matricielle Giansalvo EXIN Cirrincione."

Similar presentations


Ads by Google