Download presentation
Presentation is loading. Please wait.
1
Physics 1D03 Work and Kinetic Energy Work by a variable force Kinetic Energy and the Work-Energy Theorem Power Serway & Jewett 7.3, 7.4
2
Physics 1D03 Determine the work done by a force as the particle moves from x=0 to x=6m: x(m) F(N) 0 1 2 3 4 5 6 5
3
Physics 1D03 Then the Work-Energy Theorem says: The total work done by all external forces acting on a particle is equal to the increase in its kinetic energy. Kinetic Energy Definition: for a particle moving with speed v, the kinetic energy is K = ½ mv 2 (a SCALAR) Proof: from Newton’s Second Law, and the definition of Work.
4
Physics 1D03 Kinetic Energy is measured in joules (1J=1Nm). Kinetic energy is a scalar; the work-energy theorem is a scalar relation. This theorem is equivalent to Newton’s Second Law. In principle, either method can be used for any problem in particle dynamics. The energy approach works most easily with forces and velocities as functions of position, rather than time.
5
Physics 1D03 Example A block of mass 1kg moving with v i =2m/s gets a push of 10N over a distance of 4m. What is the new velocity ?
6
Physics 1D03 Example A bartender slides a 1-kg glass 3 m along the bar to a customer. The glass is moving at 4 m/s when the bartender lets go, and at 2 m/s when the customer catches it. Find the work done by friction, and calculate the force of friction.
7
Physics 1D03 A spring is hanging vertically. A student attaches a 0.100-kg mass to the end, and releases it from rest. The mass falls 50 cm, stretching the spring, before stopping and bouncing back. During the 50-cm descent, the total work done on the mass was: a)zero b)0.49 J c)-0.49 J d)none of the above Quiz
8
Physics 1D03 Power Power is the rate at which work is done: Average power = Work/Time Instantaneous power: infinitesimal time dt, displacement dr; work dW = F. dr, and power is units: 1 J/s =1 watt (W)
9
Physics 1D03 Example A 100kg block is pulled at a constant speed of 5.0m/s across a horizontal floor by force of 122N directed 37º above the horizontal. a) What is the power supplied by the force? b) Where does the energy go?
10
Physics 1D03 a) Free body diagram. b) The table (friction) does negative work on the block. The frictional work transfers energy to the random thermal motion of atoms of the block, table & air. mg n 122N 37º v=5.0 m/s
11
Physics 1D03 Concept Quiz a)Increases with time, starting from zero b)Is large as soon as the elevator starts, then decreases with time c)Is constant after the elevator starts to move. A 2000-kg elevator starts from rest and moves upwards with a constant acceleration of 1.0 m/s 2. The power required from the motor
12
Physics 1D03 Quiz A 100-kg sprinter accelerates from rest to 10 m/s in 4 seconds. His average power output is about: a)2.5 W b)1.25 kW c)50 kW d)It depends on whether accleration is constant
13
Physics 1D03 Quiz a)300 W b)180 W c)108 W The resistance to the motion of a racing bicycle on a smooth level road is mostly due to air resistance. The force of air resistance is proportional to the square of the speed (F air ~ v 2 ). A cyclist uses 500 W of power to ride at 50 km/h. What power does he need to ride at 30 km/h ?
14
Physics 1D03 Summary Work: To stretch an ideal spring: W = ½ kx 2 Kinetic Energy: K = ½ mv 2 Work-energy theorem: The total work is equal to the change in kinetic energy.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.