Download presentation
Presentation is loading. Please wait.
1
FE-W http://pluto.mscc.huji.ac.il/~mswiener/zvi.html EMBAF Zvi Wiener mswiener@mscc.huji.ac.il 02-588-3049 Financial Engineering
2
FE-W http://pluto.mscc.huji.ac.il/~mswiener/zvi.html EMBAF Following Paul Wilmott, Introduces Quantitative Finance Chapter 7 Elementary Stochastic Calculus
3
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 3 Coin Tossing R i = -1 or 1 with probability 50% E[R i ] = 0 E[R i 2 ] = 1 E[R i R j ] = 0 Define
4
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 4 Coin Tossing
5
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 5 Markov Property No memory except of the current state. Transition matrix defines the whole dynamic.
6
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 6 The Martingale Property Some technical conditions are required as well.
7
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 7 Quadratic Variation For example of a fair coin toss it is = i
8
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 8 Brownian Motion
9
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 9 Brownian Motion Finiteness – does not diverge Continuity Markov Martingale Quadratic variation is t Normality: X(t i ) – X(t i-1 ) ~ N(0, t i -t i-1 )
10
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 10 Stochastic Integration
11
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 11 Stochastic Differential Equations dX has 0 mean and standard deviation
12
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 12 Stochastic Differential Equations
13
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 13 Simulating Markov Process The Wiener process The Generalized Wiener process The Ito process
14
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 14 time value
15
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 15 Ito’s Lemma dtdX dt00 dX0dt
16
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 16 Arithmetic Brownian Motion At time 0 we know that S(t) is distributed normally with mean S(0)+ t and variance 2 t.
17
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 17 Arithmetic BM dS = dt + dX time S
18
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 18 The Geometric Brownian Motion Used for stock prices, exchange rates. is the expected price appreciation: = total - q. S follows a lognormal distribution.
19
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 19 The Geometric Brownian Motion
20
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 20 The Geometric Brownian Motion
21
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 21 Geometric BM dS = Sdt + SdX time S
22
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 22 The Geometric Brownian Motion
23
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 23 Mean-Reverting Processes
24
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 24 Mean-Reverting Processes
25
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 25 Simulating Yields GBM processes are widely used for stock prices and currencies (not interest rates). A typical model of interest rates dynamics: Speed of mean reversion Long term mean
26
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 26 Simulating Yields = 0 - Vasicek model, changes are normally distr. = 1 - lognormal model, RiskMetrics. = 0.5 - Cox, Ingersoll, Ross model (CIR).
27
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 27 Mean Reverting Process dS = ( -S)dt + S dX time S
28
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 28 Other models Ho-Lee term-structure model HJM (Heath, Jarrow, Morton) is based on forward rates - no-arbitrage type. Hull-White model:
29
Zvi WienerFE-Wilmott-IntroQF Ch7 slide 29 Home Assignment Read chapter 7 in Wilmott. Follow Excel files coming with the book.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.