Presentation is loading. Please wait.

Presentation is loading. Please wait.

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958

Similar presentations


Presentation on theme: "B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958"— Presentation transcript:

1 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958 bms@iup.physik.uni-bremen.de www.iup.uni-bremen.de/~bms

2 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Lecture 1 Introduction to Remote Sensing Lecture 2 Electromagnetic Radiation Lecture 3Interaction of Radiation with Gases and Matter: Spectroscopy Lecture 4 Atmospheric Radiative Transfer Lecture 5 Retrieval Techniques / Inverse Methods Remote Sensing of the Atmosphere: Lecture 6 Passive Microwave Remote Sensing Lecture 7 Infra-Red Techniques Lecture 8 Optical (UV / Visible) Remote Sensing Lecture 9Active Remote Sensing: Radar and Lidar Remote Sensing of the Earth Surface: Lecture 10 Sea Ice Remote Sensing Lecture 11 Remote Sensing of the Ocean with Satellite Altimeters Lecture 12 Summary Contents

3 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Lecture 1 Introduction General Introduction Examples of Remote Sensing Applications Introduction to Satellite Orbits

4 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Photo taken by crew of Apollo 17 7 Dec 1972

5 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 from maps.google.com

6 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 A Note on Spatial Resolution The maximum achievable resolution with an optical system is given by with α: opening angle, D: diameter of the optical aperture, λ: wavelength. Because with x: object size and h: sensor height we get α x h (Rayleigh criterion)

7 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Resolution: An example Assume some typical values: h: 800 km, D: 4m (huge!), λ: 500 nm:

8 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 ENVISAT: Launched 1 March 2002

9 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 MERIS/ENVISAT

10 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 SeaWIFS, 26. Feb. 2000

11 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 MERIS/ENVISAT, Cloud Top Pressure

12 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Ocean colour: MERIS/ENVISAT, 443 nm

13 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Ocean colour: MERIS/ENVISAT, 560 nm

14 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Ocean colour: MERIS/ENVISAT, Chlorophyll

15 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Absorption windows of atmospheric constituents

16 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Observing the Ozone Layer http://www.iup.physik.uni-bremen.de/gomenrt/ Global measurements of total ozone columns Measurement type:Satellite-based passive remote sensing Instrument:Global Ozone Monitoring Experiment (GOME) / ERS-2 Measured quantity:Total ozone columns (from backscattered solar radiation) Antarctic Ozone Hole

17 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 The Arctic Ozone Layer Ten years of GOME observtions

18 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 The Electromagnetic Spectrum 100 m 10 -4 cm -1 10 MHz 10 m 10 -3 cm -1 Radio 100 MHz 1 m 10 -2 cm -1 1 GHz 10 cm 0.1 cm -1 10 GHz Microwave 1 cm 1 cm -1 100 GHz 1 mm 10 cm -1 1 THz sub-mm – Far IR 0.1 mm 100 cm -1 10 THz 10 μm 1000 cm -1 Thermal IR al IR 100 THz Near IR 1 μm 10 4 cm -1 1000 THz Ultraviolet 100 nm 10 5 cm -1 Wavelength Frequency Wave number Visible 400-700 nm

19 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Solar Spectrum and Terrestrial Spectrum

20 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 MODIS / Terra, Gulfstream Temperature

21 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

22 AMSU-B Data (183 ±1 GHz) Dry areas in the UT (NOAA 16, Channel 18, 15.6.2004. Figure: Oliver Lemke) Microwave Remote Sensing

23 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Satellite Limb Sounding (Figure: Oliver Lemke)

24 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Microwave Limb Sonder (MLS) onboard UARS

25 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Airborne Microwave Remote Sensing

26 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 ASUR frequency range and primary species

27 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 A picture from the SOLVE campaign in Kiruna, Sweden, January 2000

28 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Validation of satellite data is important...

29 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Ground-based Radiometer for Atmospheric Measurements (RAM )

30 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Measured Microwave Spectrum by the RAM

31 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Pressure Broadening of Spectral Lines 50km / 0.5 hPa 20km / 50 hPa 10km / 200 hPa

32 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 A Note on Profile Retrieval Often we can describe the relation between the (unknown) atmospheric profile x and the measured spectrum y by a linear equation: The matrix A is also called as the weighting function matrix. Finding x from measured y would require inversion of A: However, this is generally not possible (inverse of A does not exist). Therefore one has to find some „generallized“ inverse of A:

33 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Lidar In-space Technology Experiment (LITE) on Discovery in September 1994 as part of the STS-64 mission http://www-lite.larc.nasa.gov/index.html

34 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Radar Image ENVISAT ASAR 15 April 2005

35 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Sea ice concentration from AMSR-E 89 GHz 15 April 2007 www.seaice.de courtesy of Lars Kaleschke

36 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Sea ice concentration from AMSR-E 89 GHz 15 April 2007 www.seaice.de False colour image courtesy of Lars Kaleschke

37 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Example: SCIAMACHY Tropospheric NO 2 biomass burning pollution Courtesy of Andreas Richter

38 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 NO2 reductions in Europe and parts of the US strong increase over China consistent with significant NO x emission changes 7 years of GOME data DOAS retrieval + CTM-stratospheric correction seasonal and local AMF based on 1997 MOART-2 run cloud screening 1996 - 2002 GOME annual changes in tropospheric NO 2 GOME NO 2 : Temporal Evolution A. Richter et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437 2005

39 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Lightning Flashes, Optical Transient Detector (OTD)

40 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Lecture 1 Introduction General Introduction Examples of Remote Seinsing Applications Introduction to Satellite Orbits

41 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Satellite Orbits satellite Earth apogee perigee a: major axis e: excentricity

42 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 For a circular satellite orbit around a spherically homogenous planet the gravitational force F g and the centrifugal force F c are in balance: For the Earth g=9.81 m/s 2 and R=6380 km.

43 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Orbital period given by:

44 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi

45 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi

46 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 The orbital node changes due to precession, primarily due to the oblateness of the Earth. The rate of change for the orbital node is approximately given by: Here J 2 =0.00108 is the second harmonic of the Earth geopotential. I is the inclination angle.

47 B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi


Download ppt "B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958"

Similar presentations


Ads by Google