Download presentation
Presentation is loading. Please wait.
1
Course Code:EBB 324 Course Code:EBB 324 Course Title:Advanced Materials and Composites Course Title:Advanced Materials and Composites Course Unit:4 Course Unit:4 Type of Course:Core Type of Course:Core Name of academics:Dr. Mariatti Jaafar Name of academics:Dr. Mariatti Jaafar Dr. Hazizan Md Akil Dr. Hazizan Md Akil Dr. Zuhailawati Hussin Dr. Zuhailawati Hussin (6) Contribution of Assessment:70% final examination & 30% course work (15% Test and 15% Quiz/PBL) (6) Contribution of Assessment:70% final examination & 30% course work (15% Test and 15% Quiz/PBL)
2
Course Objectives/Course Outcomes (CO) 1. To classify different types of advanced composite materials 1. To classify different types of advanced composite materials 2. To select and justify a suitable advanced composite materials for specific applications 2. To select and justify a suitable advanced composite materials for specific applications 3. To propose a suitable fabrication technique of advanced composite materials for specific applications 3. To propose a suitable fabrication technique of advanced composite materials for specific applications 4. To apply suitable theory to estimate the properties of the advanced composite materials 4. To apply suitable theory to estimate the properties of the advanced composite materials
3
EBB 324 (Advanced Materials & Composites) Topic Contents Introduction to composite materials (Definition and classification of composite materials, natural composites, the benefit of composites) Introduction to composite materials (Types of matrix (natural and synthetic), types of reinforcement (natural and synthetic), factors which determine properties)
4
Reinforcement-matrix interface (Wettability, Interfacial bonding, methods to measure bond strength) Polymer matrix composites (Introduction, types of polymer matrices (thermoplastics, thermoset & rubber), processing of PMC- Hand lay-up, spray-up moulding methods (match die moulding, bag moulding method, vacuum bagging, pressure bagging, RTM), pultrusion, filament winding) Polymer matrix composites (Some commercial PMCs- epoxy and polyester matrix composites, PEEK matrix composites, rubber matrix composites, etc.)
5
References R.F. Gibson, Principles of Composite Materials Mechanics, McGraw Hill, Inc, 1994. R.F. Gibson, Principles of Composite Materials Mechanics, McGraw Hill, Inc, 1994. F.L. Matthews, R.D. Rawlings, Composite Materials; Engineering & Science, Chapman & Hall, 1994. F.L. Matthews, R.D. Rawlings, Composite Materials; Engineering & Science, Chapman & Hall, 1994. R.P Sheldon, Composite Polymeric Materials, Applied Science Publisher, 1982 R.P Sheldon, Composite Polymeric Materials, Applied Science Publisher, 1982 S. C. Sharma, Composite Materials, Narosa Publishing House, 2000 S. C. Sharma, Composite Materials, Narosa Publishing House, 2000
6
What is Composites? Combination of 2 or more materials Combination of 2 or more materials Each of the materials must exist more than 5% Each of the materials must exist more than 5% Presence of interphase Presence of interphase The properties shown by the composite materials are differed from the initial materials The properties shown by the composite materials are differed from the initial materials Can be produced by various processing techniques Can be produced by various processing techniques
7
Classifications of composites Matrix; PMC, MMC, CMC Matrix; PMC, MMC, CMC Function; electrical & structure Function; electrical & structure Geometry of reinforcements; fiber composites & particulate composites Geometry of reinforcements; fiber composites & particulate composites
8
Classification based on Geometry of reinforcement Composite materials Fiber- composites Particulate- composites Random orientation Uni -directional Random orientation Uni- directional Two- directional Whiskers Flake
9
Examples of composites a)Particulate & random b)Discontinuous fibers & unidirectional c)Discontinuous fibers & random d)Continuous fibers & unidirectional
10
Classification based on Matrices Composite materials Matrices Polymer Matrix Composites (PMC) Metal Matrix Composites MMC) Ceramic Matrix Composites (CMC) ThermosetThermoplasticRubber
11
Polymer matrix composites Widely used- ease of processing, lightweight & desirable mechanical properties Widely used- ease of processing, lightweight & desirable mechanical properties
12
Metal Matrix Composites (MMC) Generate wide interest in research Generate wide interest in research Not as widely use as PMC Not as widely use as PMC Higher strength, stiffness & fracture toughness Higher strength, stiffness & fracture toughness Can withstand elevated temperature in corrosive environment than PMC Can withstand elevated temperature in corrosive environment than PMC Most metal and alloy can be used as matrices Most metal and alloy can be used as matrices
13
Ceramic Matrix Composites (CMC) Able to withstand high temperature (>1649ºC) & brittle Able to withstand high temperature (>1649ºC) & brittle Used in aeronautics, military, etc Used in aeronautics, military, etc Carbon and glass are common matrix used in CMC Carbon and glass are common matrix used in CMC
14
Natural Composites Wood Wood –Consists of cellulose, hemiselulose & lignin –Cellulose- the strongest component, 65% unidirectional alignment –Lignin behave as adhesive, tighten the wood components
15
Bone Bone –Example; hydroxyapatite reinforced collagen composites Natural Composites
16
Pole (Construction Industry) Traditional wood→steel→concrete→pol ymer composite (made of layers of glass fabric + resins) Traditional wood→steel→concrete→pol ymer composite (made of layers of glass fabric + resins) Advantages of Polymer Composites Advantages of Polymer Composites 1) won't rust, or corrode 2)require no preservatives 3) light-weight, lighter than aluminum, wood, steel or concrete. 4) the lowest possible total installed cost
17
Modern vaulting poles H ere is an example of a vaulting pole made from glass fibre reinforced polymer (GFRP) composites and carbon fibre reinforced polymer (CFRP) composites
18
Benefits of Composites??? Improved properties (thermal, mechanical, electrical, etc) Improved properties (thermal, mechanical, electrical, etc) Many end-applications Many end-applications
19
Bahan pembentuk komposit Matriks Matriks Bahan tetulang/penguat (Reinforcement) Bahan tetulang/penguat (Reinforcement) Antaramuka/antarafasa Antaramuka/antarafasa
20
Matriks: Fungsi Mengikat bahan tetulang Mengikat bahan tetulang Memindah dan mengagihkan beban kenaan kepada tetulang, ttp pemindahan beban bergantung kepada ikatan antaramuka Memindah dan mengagihkan beban kenaan kepada tetulang, ttp pemindahan beban bergantung kepada ikatan antaramuka
21
Matriks Needs to withstand temperature variations Needs to withstand temperature variations Offer weight advantages, ease of handling Offer weight advantages, ease of handling
22
Bahan tetulang: Fungsi bergantung kepada matriks Bahan tetulang: Fungsi bergantung kepada matriks matriks logam: utk meningkatkan kekerasan dan ketahanan rayapan suhu tinggi matriks logam: utk meningkatkan kekerasan dan ketahanan rayapan suhu tinggi matriks polimer: utk memperbaiki sifat kekakuan, kekuatan dan keliatan matriks polimer: utk memperbaiki sifat kekakuan, kekuatan dan keliatan matriks seramik: utk memperbaiki keliatan matriks seramik: utk memperbaiki keliatan
23
Bahan tetulang wujud dalam bentuk: Gentian selanjar Gentian selanjar –Gentian organik- cthnya Kevlar, polietilena –Gentian tak organik- cthnya kaca, alumina, karbon –Gentian asli- cthnya asbestos, jut, sutera Gentian pendek Gentian pendek Hablur sesunggut (whiskers) Hablur sesunggut (whiskers) Partikel Partikel Dawai Dawai
24
Antarafasa: Fungsi Memindahkan tegasan daripada matriks kepada bahan tetulang Memindahkan tegasan daripada matriks kepada bahan tetulang Sometimes surface treatment is carried out to achieve the required bonding to the matrix
25
Types of matrix (natural and synthetic) Natural Natural –Silica sand, limestone (CaCO3), talc, etc –Starch, epoxy based on soy bean, chitosan, etc Synthetic Synthetic –Fumed silica, fused silica, glass, etc –Epoxy, polyester, PP, PE, etc
26
Types of reinforcement (natural and synthetic) Natural Natural –Silica sand, limestone (CaCO3), talc, etc –Natural fibers, wood, etc Synthetic Synthetic –Glass fiber, boron fibers, etc –Fumed silica, fused silica, glass, etc
27
Faktor-faktor yang mengawal sifat- sifat komposit Komposisi komponen Komposisi komponen -Komposisi setiap komponen (matriks dan tetulang) mempengaruhi terus sifat2 akhir komposit. -Komposisi setiap komponen (matriks dan tetulang) mempengaruhi terus sifat2 akhir komposit. X c = X f V f + X m (1 - V f ) – Hukum Pencampuran/Rule of Mixture X c = X f V f + X m (1 - V f ) – Hukum Pencampuran/Rule of Mixture X c = Sifat komposit X c = Sifat komposit X f = Sifat gentian X f = Sifat gentian X m = Sifat matriks X m = Sifat matriks
28
Rongga ruang udara yang terkumpul atau terperangkap dalam komposit ruang udara yang terkumpul atau terperangkap dalam komposit dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit
29
ruang udara yang terkumpul atau terperangkap dalam komposit ruang udara yang terkumpul atau terperangkap dalam komposit dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit
30
Bentuk, saiz, orientasi dan taburan gentian Bentuk gentian (partikel- bulat, whiskers, bersudut, etc) Bentuk gentian (partikel- bulat, whiskers, bersudut, etc) Saiz gentian ( pendek, panjang, selanjar) Saiz gentian ( pendek, panjang, selanjar) Orientasi gentian (satu arah, dua arah, pelbagai arah)- mempengaruhi sifat isotropi dan tak isotropi Orientasi gentian (satu arah, dua arah, pelbagai arah)- mempengaruhi sifat isotropi dan tak isotropi Taburan gentian (homogenus/uniform, takhomogenus) Taburan gentian (homogenus/uniform, takhomogenus)
31
Examples of different composite geometrical arrangements
33
Teknik dan parameter pemprosesan mempengaruhi pemilihan bahan mentah yang sesuai, bentuk akhir komposit, kandungan rongga dll mempengaruhi pemilihan bahan mentah yang sesuai, bentuk akhir komposit, kandungan rongga dll mempengaruhi struktur dan morfologi sesuatu komposit mempengaruhi struktur dan morfologi sesuatu komposit
34
Antaramuka & Antarafasa (Interfaces & Interphases) Figure 1.2 Figure 1.2 Apabila Antarafasa wujud, terdapat 2 antaramuka yang hadir
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.