Download presentation
1
A coherent subnanosecond single electron source
Gwendal Fève Groupe de Physique Mésoscopique Laboratoire Pierre Aigrain ENS Jean-Marc Berroir Bernard Plaçais Christian Glattli Takis Kontos Julien Gabelli Adrien Mahé Samples made at : Laboratoire de Photonique et Nanostructures (LPN) Yong Jin Bernard Etienne Antonella Cavana
2
Motivation Gaz 2D I VG Weizmann Institute, Israel Y. Ji et al Nature (2003) Poster P. Roulleau, CEA Saclay
3
Single electron sources
DC biased Fermi sea is a noiseless electron source: D Kumar et al. PRL (1996) 0,0 0,2 0,4 0,6 0,8 1,0 ( ) 1 - T 2 + Fano reduction factor Conductance 2e² / h .8 .6 .4 .2 No temporal control A. Kumar et al. Phys. Rev. Lett. 76 (1996) Objective : realisation of a single electron source similar to single photon sources Time controlled injection of a single electron in a quantum conductor Electron optics with one or two electrons (entanglement…)
4
Principle of single charge injection
V(t) QPC Gaz 2D Boîte e D V(t)
5
Principle of single charge injection
V(t) QPC Gaz 2D Boîte e V(t)
6
Principle of single charge injection
V(t) QPC Gaz 2D Boîte e I V(t) 100 ps for D=2.5°K and D =0.2
7
The quantum RC circuit l < mm
8
The quantum RC circuit D=t2 No spin degeneracy
Quantum dot D=t2 No spin degeneracy One dimensional conductor
9
Linear dynamics of the quantum RC circuit
Linear regime,
10
The quantum RC circuit, T=0K
CPQ , dot density of states The resistance is constant, independent of transmission, and equals half the resistance quantum for a single mode conductor ! M. Büttiker et al PRL , PLA180, (1993)
11
The quantum RC circuit , T=0K
Quantum dot D=t2 kBT << DD Coherent regime kBT >> DD Sequential regime
12
Complex conductance D Fit by
13
Conclusion on linear dynamics
linear regime: dot spectroscopy complete determination of experimental parameters charge dynamics J.Gabelli, G.Fève et al Science (2006)
14
Towards single charge injection
Injection regime : Régime linéaire : Charge moyenne transférée par alternance : Mean transferred charge by alternance : The transferred charge is quantized
15
Current detection In time domain : Measurement of the first harmonic :
Fast averaging acquisition card Acquiris, Temporal resolution 500 ps. Developed by Adrien Mahé Slow excitation f=31.25 MHz 16 odd harmonics of the current courant in a 1 GHz bandwidth « slow » dynamics Measurement of the first harmonic : Faster excitation f=180 MHz and f=515 MHz More accurate determination of the transferred charge And of the escape time in the subnanoseond domain :
16
Time domain evolution of the current
Average on 108 electrons
17
Response to a non-linear square excitation
Simplification : non-linear : First harmonic :
18
Response to a non-linear square excitation
D D<<1 , D»1 1/D << e
19
First harmonic measurement
2eVexc=3/2 D 2eVexc=5/4 D 2eVexc= D 2eVexc=3/4 D 2eVexc=1/2 D 2eVexc=1/4 D (linear regime)
20
Quantization of the AC current
N(e)
21
Quantization of the AC current
N(e)
22
Quantization of the AC current
N(e)
23
Transmission dependence
24
Dot potential dependence
f = 182 MHz N(e)
25
Escape time
26
Comparison with modelling
27
AC current diamonds 2eVexc VG (mV) Im (Iw) (ef) 2 3 4 1 Modelling : D
0.02 0.15 0.4 0.8 0.9 Modelling : 2eVexc -912 -907 -902 -897 -892 -887 VG (mV) Im (Iw) (ef) 2 3 4 1
28
Conclusion Quantization of the injected charge
1st stage towards the realisation of a single electron source Injection dyanmics measured in a large temporal range from 0.1 to 10 ns Excellent agreement with a simple modeling
29
Prospect Electron-electron collision : Indistinguishibility of
two independent sources
31
Experimental setup dc rf local G=X+iY 3 cm 3 mm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.