Download presentation
Presentation is loading. Please wait.
2
Complex TransformationsG. ’t Hooft and the Gerard ’t Hooft Spinoza Institute Utrecht Utrecht University
3
Complex TransformationsG. ’t Hooft One sees here an accelerated expansion...
4
Complex TransformationsG. ’t Hooft The expanding Universe = density of matter at = spacelike curvature, usually assumed to vanish = cosmological constant
5
Complex TransformationsG. ’t Hooft
6
Complex TransformationsG. ’t Hooft The Cosmological Constant Problem stretchability very small stiffness very large
7
Complex TransformationsG. ’t Hooft The inflating Universe
8
Complex TransformationsG. ’t Hooft During inflation, one can try to follow the effects o f on the cosmological cnstant term ++... but the subtraction term is crucial: X
9
Complex TransformationsG. ’t Hooft Various theories claim such an effect, but the physical forces for that remain obscure. Can this happen ? Does tend to zero during inflation ???
10
Complex TransformationsG. ’t Hooft With S. Nobbenhuis, gr-qc/ 0602076 De Sitter Anti-De Sitter
11
Complex TransformationsG. ’t Hooft 1. Classical scalar field: Gravity:
12
Complex TransformationsG. ’t Hooft 2. Non-relativistic quantum particle: Example:
13
Complex TransformationsG. ’t Hooft There is a condition that must be obeyed: translation invariance: real or complex Note: change of hermiticity properties There can exist only one state,, obeying boundary conditions both at and
14
Complex TransformationsG. ’t Hooft 3. Harmonic oscillator: Change hermiticity but not the algebra: We get all negative energy states, but the vacuum is not invariant ! E 0
15
Complex TransformationsG. ’t Hooft 4. Second quantization: Definition of delta function: divergent !
16
Complex TransformationsG. ’t Hooft x -space hermiticity conditions: (Now, just 1 space-dimension)
17
Complex TransformationsG. ’t Hooft Then, the Hamiltonian becomes: Express the new in terms of “ = 0 by contour integration ”
18
Complex TransformationsG. ’t Hooft In that case: and then the vacuum is invariant ! The vacuum energy is forced to vanish because of the x ↔ ix symmetry
19
Complex TransformationsG. ’t Hooft 5. Difficulties Particle masses and interactions appear to violate the symmetry: Higgs potential: Perhaps there is a Higgs pair ?
20
Complex TransformationsG. ’t Hooft The pure Maxwell case can be done, but gauge fields ?? The image of the gauge group then becomes non-compact...
21
Complex TransformationsG. ’t Hooft The x ↔ ix symmetry might work, but only if, at some scale of physics, Yang-Mills fields become emergent... q uestions: relation with supersymmetry... ? interactions... renormalization group....
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.