Download presentation
Presentation is loading. Please wait.
1
An Elementary Construction of Constant-Degree Expanders Noga Alon *, Oded Schwartz * and Asaf Shapira ** *Tel-Aviv University, Israel **Microsoft Research, USA TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A SODA 2007
2
2 Expanders l Sparse l Highly connected [n,d, ]- expander n vertices, d regular For every |S| ≤ n/2 d|S | ≤ |E(S,V \ S)|
3
3 Applications of Expanders l Robust networks l Derandomization l Error Correcting Codes l PCP l Hardness of approximations l …
4
4 Eigenvalues of Graphs G: [n, d, ]- expander Adjacency matrix A: A i,j = #(i,j) edges Eigenvalues 1 ¸ 2 ¸ … ¸ n 1 = d, v 1 =1 n = max i 1 {| i |}
5
5 Expansion vs. Eigenvalues G : [n, d, ]- expander iff < d Thm: [Alon-Milman84, Dodziuk84, Alon86] (Actually 2 )
6
6 Existence [Pinsker73]: 9 > 0, s. t. 8 d ¸ 3 and (even) n, 9 [n, d, ]- expander.
7
7 Constructions Explicit: Construct G »E.g, for reductions »Time = Poly(n) »or even Space = log n »Which n ’s? –8n.–8n. Fully Explicit: Find the i ’th neighbor of v »E.g, for derandomization »Time = Poly(|v|) = Poly(log n) »or even Space = loglog n »Which n ’s? –|G|=Poly(n) usually suffices.
8
8 Some Previous Results l [Margulis73], [Gabber-Galil81] Algorithm for Constant degree expanders. l …[Lubotzky-Phillips-Sarnak88], [Margulis88] Ramanujan Graphs. l [Alon-Roichman94] Polylog degree. l [Reingold-Vadhan-Wigderson02] Iterative construction.
9
9 Our Contribution Thm: 9 8 n : Explicit [Poly(n), O(1), ]- expander »Simple to construct »Simple to analyze Applying the above we obtain: 1. Fully Explicit [Poly(n),O(1), ]- expander 2. Explicit [n, O(1), ]- expander
10
10 G2G2 Replacement Product: G 1 ® G 2 G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G1G1 For all v of G 1 : 1. Split 2. Install G 2 3. Duplicate edges
11
11 G 1 ® G 2 : Properties G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]-expander
12
12 G 1 ® G 2 : Some History G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]-expander [Gromov83] : Spectral Analysis [Reingold-Vadhan-Wigderson02] : via Zig-Zag [Papadimitriou-Yannakakis91] : for Inapprox. [Dinur05] : for PCP
13
13 G 1 ® G 2 : Expansion G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 Thm:G 1 ® G 2 is a [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander [here]: Simple combinatorial proof.
14
14 E 1 : [n, log 2 n, ¼ ]- expander [Special case of Alon-Roichman] E 2 : [log 2 n, (loglogn) 2, ¼ ]- expander [A&R again] E 3 : [2(loglog n) 2, 3, ]- expander (Pinsker, exhaustive search) Return E = (E 1 ® E 2 ) ® E 3 New Construction (roughly) Constant Degree Expander Algorithm E: [Poly(n), 6, ’ ]- expander Proof
15
15 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander S V \ S G 1 ® G 2
16
16 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 ® G 2 : Combinatorial Proof G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander G2G2 X G2G2 ? G 1 ® G 2
17
17 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2 G2G2 X G2G2 ? + G2G2 G2G2 G2G2 G2G2 - - X G 1 ® G 2
18
18 A&R: Proof (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 The (x,y) neighbor of (a 0,…,a r ) is: (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).
19
19 LD(q,r): Properties LD(q,r) : n = q r+1 vertices d = q 2 -regular Thm: [Alon-Roichman94]: (LD(q,r)) · rq For r = q/2 ¸ ½(1- / d) ¸ ¼ log 2 (n) ¸ (½q log q) 2 > q 2 = d LD(q,r) : [n, O(log 2 n), ¼]- expander.
20
20 LD(q,r): Eigenvalues M: n £ n matrix of LD(2 t,r) L : 2 t ! {0,1}L(x 0,…x t-1 )=x 0 Eigenvectors:
21
21 LD(q,r): Eigenvalues 1. v a are orthogonal 2. v a are eigenvectors (what eigenvalues?) + v a are all eigenvectors
22
22 LD(q,r): Eigenvalues 1. v a are orthogonal Proof: = b v a (b) v a’ (b) W.l.o.g, a 0 a’ 0. All values
23
23 LD(q,r): Eigenvalues 2. v a are eigenvectors Proof: v a (b + c) = v a (b) v a (c) (M v a )(b) = c 2 F r+1 M bc ¢ v a (c) = x,y 2 F v a (b+y(1,x,...,x r )) = ( x,y 2 F v a (y,yx,...,yx r )) ¢ v a (b) The (x,y) neighbor of b a
24
24 LD(q,r): Eigenvalues 2. v a are eigenvectors! What are a ? a = x,y 2 F v a ((y,yx,...,yx r )) p a (x) = i r =0 a i x i
25
25 LD(q,r): Eigenvalues 2. v a are eigenvectors. What are a ? =1, 8 y= |F| = q all values = 0 a = (0,…0) ) a = q 2 a (0,…0), ) p a has at most r roots ) a · rq
26
26 Variants »For every n »Fully explicit
27
27 For Every n LD(q,r) : n = q r+1 vertices d = q 2 -regular E 1 : [ q 2,3, ]-expander Search E 2 : [ q 6,q 2,1/4 ]-expander LD(q,5) E 3 : [ q 4(r+1),q 8,1/4 ]-expander LD(q 4,r)q 4 /100≤ r ≤ q 4 /2 E 4 = E 3 ® ( E 2 ® E 1 ) E 4 : [q 4r+12,12, ’]- expander
28
28 Poly(n) E 4 : [q 4r+12,12, ’]- expander q 4 /100≤ r ≤ q 4 /2 q = 2 t n = q ^ (q 4 ) q 4 = (lg n / lg lg n) t’ = t + 1 q’ = 2q, r’ = 16r n’ ≤ (2q) 4r’+12 = Poly(n) r’ = r - 1 n’ = n/ q 4 q 4(1/2 q^4)+12 > (2q) 4(16 q^4 /100) +12 n,n lglgn / lgn ≤ n 0 ≤ n
29
29 (n) n,n lglgn / lgn ≤ n 0 ≤ n a = n / n 0 < lgn / lglgn if a < 100 – done. E 5 : [12a, 3, ]- expander search : (lgn/lglgn) (lg n / lglg n) = Poly(n) l Duplicate edges l E = E 4 ® E 5 E:[12n, 6, ’’]- expander
30
30 Fully Explicit Vertex naming: (x,y) The i ’th neighbor of (x,y) »If i ≤ d 2 then (x, y’) : y’ is neighbor i in G 2 » else (x’, y): x’ is neighbor y in G 1 G2G2 G1G1 G 1 : [n, d 1, δ 1 ]- expander G 2 : [d 1, d 2, δ 2 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]- expander
31
31 Connection Scheme G 2 is d 2 - edge-colorable + G 1 ® G 2 is 2d 2 - edge-colorable. G 1 : [n, d 1, δ 1 ]- expander G 2 : [d 1, d 2, δ 2 ]- expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]- expander Connection scheme? (rotation map) e.g : d 1 - edge-coloring for G 1.
32
32 Fully Explicit l G 1 ® G 2 »Fully Explicit »D-edge-colorable l Alon-Roichman: »Fully Explicit »D-edge-colorable l Pinsker »Fully Explicit »D-edge-colorable
33
33 A&R: Edge Colorability (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 the (x,y) neighbor of (a 0,…,a r ): (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).
34
34 Conclusions and Open Problems l A (Fully) explicit constant degree expander »Simple to construct »Simple to analyze l Exploiting the simplicity? l Simple combinatorial proof »for [n, poly-log n, ¼ ]-expander? »for graph powering? »for (near) Ramanujan graphs?
35
35 Expanders Construction Thank You.
36
36 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 ® G 2 : Combinatorial Proof G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander
37
37 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander (1- 1 /4)d 1 Each contributes: 1 d 1 /4 ¢ 2 d 2 If ( small ) ¸ 1 |S|/10 #sets ¸ 1 |S|/10d 1 Total : 1 d 1 /4 ¢ 2 d 2 ¢ 1 |S|/10d 1 = 1 2 2 /80 ¢ 2d 2 ¢ |S| Else small) < 1 |S|/10 ( Large ) ¸ (1- 1 /10) |S|
38
38 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander Else small) < 1 |S|/10 ( Large ) ¸ (1- 1 /10) |S|
39
39 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2
40
40 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G 1 : Total ¸ ½ 1 d 1 #large-sets G 1 ® G 2 : ½ 1 d 1 d 2 #large-sets - corrections
41
41 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 At most: ¼ 1 d 1 d 2 #large-sets
42
42 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander At most: d 2 ( small ) < d 2 1 |S| /10 · 1 d 2 /10 ¢ #large-sets d 1 10/(10- 1 ) · 1/9 1 d 1 d 2 #large-sets G2G2 G2G2 G2G2 G2G2
43
43 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 ¼ 1 d 1 d 2 #large-sets ½ 1 d 1 d 2 #large-sets - corrections 1/9 1 d 1 d 2 #large-sets
44
44 Compared to Random Walk G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander
45
45 [n,polylog n, ]-expander (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 the (x,y) neighbor of (a 0,…,a r ): (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).
46
46 LD(q,r): Properties LD(q,r): n = q r+1 vertices d = q 2 -regular q 2 - edge-colorable Thm: [Alon-Roichman94]: (LD(q,r)) · rq Recall ½(1- / d) · If r · q/2 then LD(q,r) is a [q r+1, q 2, ¼]- expander.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.